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§ Problem related objective func. :
𝐸 , 𝜓!"#$%! 𝜓 𝑇

&
, etc.

§ Classical optimizer : 
Bayesian optimisation works great 
with few iterations on low dim. 
space.

§ Pulse shaping : 
{t, Ω 𝑡' , 𝛿 𝑡' } + interpolation by  
monotonic cubic splines.
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3.1 – State Preparation 3.2 – UD MIS

1 – Quantum Computing with Rydberg atoms 2 – Pulse Shaping Optimisation (PUSHO)
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3.3 – QUBO

Quadratic	Unconstrained	Binary	Optimisation
§ 𝑄 ∈ 𝑀! ℝ , find 𝑥∗ ∈ 𝔹! minimising 𝑓# 𝑥 = 𝑥$𝑄𝑥.
§ Many problems can be embedded as QUBOs [6].
§ Study symmetric case with ℎ% = 𝑄%% ≤ 0 and 𝑄%&' ≥ 0.
§ Connection with Ising model but limited by connectivity. 

Formalism
§ B𝐶 = −∑% ℎ% F𝑛% + ∑%&'𝑄%' F𝑛% F𝑛'
§ Optimally arrange atoms such that ⁄𝐶( 𝑅%)' ~ 𝑄%)'.
§ Choose 𝛿~ℎ and Ω~max

%&'
𝑄%'.

§ Start from uniform superposition of states (using PUSHO).
§ Approx. ratio as defined in MIS part.

Results 
§ For 5 𝑄 ∈ 𝑀*+, PUSHO outperforms QAOA with pulses of 

similar duration and amplitude.

Maximum	Independent	Set
§ Graph 𝐺 = (𝑉, 𝐸) with 𝑉, vertices and 𝐸, edges.
§ Independent Set (IS) : set of vertices in a graph, no two of 

which are sharing an edge. 

§ NP-hard problem to find an IS of maximum size (MIS).
§ Even harder to find all MIS of a graph. 

Formalism
§ 1 atom = 1 node of a Unit Disk (UD) graph (edge if 𝑑%' < 𝑑).
§ Rydberg blockade implements the IS constraint. 
§ MISs correspond to product states with 

as many excitations as allowed [5]. 

§ B𝐶 = −∑%∈- F𝑛% + 𝐾∑ %,' ∈/ F𝑛% F𝑛'
with 𝐾 ≫ 1.

§ Minimize approximation ratio 

𝑟 = ]∑!0*
1!"#$!⟨𝑛| B𝐶| ⟩𝑛

𝑁23452

Results
§ 𝒢 dataset of 50 randomly generated UD graphs of 15 atoms
§ Average ratio on 𝒢 reaches 0.92 for large 𝑚.

ff4 – Conclusion & Outlooks

Not IS MIS

§ Problem related objective function (score) 𝑓:
average energy, overlap with target state, approx. ratio.

§ Classical optimizer :
Bayesian optimisation [3] works great with few iterations 
(small n) on low-dimensional parameter space.

§ Qubit logical states | ⟩0 , | ⟩1 are two electronic 
levels of 87𝑅𝑏 atom.

§ Atoms can be arranged in arbitrary patterns 
using optical traps generated by a spatial light 
modulator (SLM). 

§ Fluorescence imaging provides global 
measurement, only picturing atoms in | ⟩0 . 

§ In Ising mode, lasers are coupled to a Rydberg 
transition, between a ground | ⟩𝑔 = | ⟩0 and a 
highly-excited Rydberg state h ⟩𝑟 = | ⟩1 .

§ Ising Hamiltonian :

§ Performing optimal control on the shape of 
Ω 𝑡 and 𝛿 𝑡 should provide a versatile 
method to solve various problems.

Initial States
§ Atoms all initialised in | ⟩𝑔 and only global addressing 

available.
§ Some problems need to start from specific states, e.g.
| ⟩+ ⊗1 or antiferromagnetic (AF) phases.

AF state on periodic chain 
• AF : neighbouring atoms are in opposite states.
§ Score : Neel structure factor, maximised for AF state.
§ PUSHO provides adiabatic pulses, smoother than typical 

ramp. 𝑆1é89/𝑆:;< = 0.98

Uniform superposition
§ No local gate available, global pulse required.
§ PUSHO increases fidelity by 27% over a global Blackman 

pulse. 

Fig. 4 : (a) Optimal pulse found after 30 iterations. (b) Optimal path in 1D 
phase diagram [4] (c) Increase of structure factor shows AF phase transition.

Fig. 5 : Distributions after (top) 𝑁 simultaneous perfect Hadamard gates, (middle)
global Blackman pulse (250 ns, 2 MHz) and (bottom) optimised pulse (160 ns, 2 MHz)
for triangular lattice of 10 atoms separated by 8.5𝜇𝑚.

𝐻 = ℏF(H)
J
∑% F𝜎%< − ℏ𝛿(𝑡)∑% F𝑛% + ∑%K'
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with F𝜎%< = ⟩𝑟 ⟨𝑔 % + ℎ. 𝑐. , F𝑛% = ⟩𝑟 ⟨𝑟 %, 𝐶( ∝ 𝑛**.

Fig. 1: Overview of the main hardware components of 
Pasqal QPU. [1]

QPU

Fig. 2: Global adressing of an atom register, coupled to a Rydberg transition.

Fig. 3 : Closed loop between CPU & QPU.
The optimizer feeds the quantum device
a pulse to test. Once the driving has
been repeated 𝑁!"#$! times, the score
evaluation is fed back to the optimizer
which will decide the next point to
probe.

§ Pulse shaping : 
{t, Ω 𝑡% , 𝛿 𝑡% } + interpolation by  monotonic cubic splines.

§ PUSHO = VQA closer than QAOA to Rydberg platforms, with smoother and shorter pulses. 

Fig. 6 : Diagram showing Rydberg blockade effect.

Variational Quantum Algorithms (VQA)
§ Classical Processing Unit (CPU) + Quantum Processing Unit (QPU) in closed feedback loop.
§ Famous QAOA [2] can approximately solve combinatorial optimisation problems which 

remain computationally hard to solve on CPUs alone. 
§ As digital approach with layers of gates, it is not well suited for current Rydberg platforms. 

PUSHO

Fig. 9 : Comparison between QAOA and PUSHO. Distribution achieved with PUSHO 
outperforms the one QAOA converges to, even with higher-dimensional space.

Fig. 8 : Instance of distribution obtained after an optimised pulse. Bitstrings
sampled most frequently are of energy very close to the minimum one.
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§ PUSHO provides a straightforward but powerful alternative to QAOA, taking advantage of 
our ability to precisely control the shape of the driving fields. 

§ In all the above cases, the final score reached with PUSHO is always higher than the one 
found with QAOA, for similar optimization conditions. 

§ In the presence of noise Δ, PUSHO can also improve the average score 𝑆 N by providing a 
more resilient pulse than square pulses (Master thesis) 

×𝑚

Fig. 7 : Convergence study of PUSHO on UD graph dataset 𝒢. After 𝑚% = 30
random calls to learn about the score landscape, Bayesian optimisation
iteratively provides new pulses to test. Already after 150 calls, the mean ratio
achieved is 0.87.


