
1

Weak measurements: fundamental aspects

Yves Caudano

Research Unit Lasers and Spectroscopies (UR LLS), Physics Department
Namur Institute for Complex Systems (naXys)
Namur Institute for Structured Matter (NISM)

University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium

Weak measurements - 2021

2Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values

Weak measurements - 2021

3Talk outline

A few relevant references to weak measurements
(some of which inspired this course)

Review and introductive papers

[1] Introduction to weak measurements and weak values, 
B. Tamir and E. Cohen, Quanta 2 (2013) 7–17.

[2] Understanding quantum weak values: Basics and applications,
J. Dressel, M. Malik, F. M. Miatto, A. N. Jordan, and R. W. Boyd, Rev. Mod. Phys. 86 (2014) 307.

[3] Quantum paradoxes, 
Y. Aharonov and D. Rohrlich, Wiley-VCH, 2005

[4] Nonperturbative theory of weak pre- and post-selected measurements, 
A. G. Kofman, S. Ashhab, and F. Nori, Physics Reports 520 (2012) 43–133.

[5] Pedagogical review of quantum measurement theory with an emphasis on weak measurements, 
B. E. Y. Svensson, Quanta 2 (2013) 18–49.

[6] A time-symmetric formulation of quantum mechanics, 
J. Tollaksen, Y. Aharonov, and S. Popescu, Phys. Today 63 (2010) 27–32.

[7] The Two-State Vector Formalism: An Updated Review, 
Y. Aharonov and L. Vaidman, Lect. Notes Phys. 734 (2008) 399–447.

Selected personal papers

[1] Revealing geometric phases in modular and weak values with a quantum eraser, 
M. Cormann, M. Remy, B. Kolaric, and Y. Caudano, Phys. Rev. A 93 (2016) 042124.

[2] Geometric description of modular and weak values in discrete quantum systems using the Majorana representation, 
M. Cormann and Y. Caudano, J. Phys. A: Math. Theor. 50 (2017) 305302.

Weak measurements - 2021

4Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values

Weak measurements - 2021

51. von Neumann measurement

Magnetic dipole deviation in a non uniform field
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61. von Neumann measurement

Magnetic dipole deviation in a non uniform field
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71. von Neumann measurement

This quantum measurement exhibits several 
essential ingredients
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q Independent system & pointer, except for a finite duration
q Result linked to the observable value Sz

q Measured observable unaffected
q Short interaction (measurement) time
q Quantum process Hint

Aimant

Ref.: Quantum paradoxes, Y. Aharonov and D. Rohrlich, Wiley-VCH, 2005 Weak measurements - 2021

81. von Neumann measurement

These properties are the basis of the von 
Neumann model of quantum measurement

Interaction Hamiltonian
( )int s mH g t A P= Ä

Full Hamiltonian (system S and pointer M)
s m intH H H H= + +

( ) ( )0 0

T
g g t dt g t dt
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(independent observables of S and M)

Coupling strength

g
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91. von Neumann measurement

The pointer evolves according to Heisenberg’s 
equation

Heisenberg formalism
( ) ( )

0 0
0 ,

T Tm
m m m

dQ iQ T Q dt H Q dt
dt

- = = é ùë ûò ò
!

Canonically conjugates operators of the pointer M
,m mQ P i=é ùë û !

q Defined pointer initial state Qm(0)=0
q Defined system initial state As

Additional assumptions
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101. von Neumann measurement

Heisenberg’s equation gives the final pointer 
value of the measuring device

Full Hamiltonian
( )s m s mH H H g t A P= + + Ä

Heisenberg formalism
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Final position of the pointer
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111. von Neumann measurement

The pointer position gives the observable value
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121. von Neumann measurement

von Neumann measurement scheme
in Schrödinger’s formalism

Initial and final states

i s my y y= Ä f s mUy y y= Ä

Temporal evolution

State decomposition
in the As observable eigenstates basis

s j j jA a a a= s j j
j

ay a=å
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131. von Neumann measurement

We consider a position measurement of the 
pointer state
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Initial pointer state

Gaussian state
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141. von Neumann measurement

The system and the pointer states become 
entangled

Action of the translation operator
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151. von Neumann measurement

The overlap of the pointer wavepackets define 
two situations

Final state in position representation

Strong coupling
2
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Weaker coupling

'2𝒒𝒎(𝝍𝒇 𝒒𝒎 =*
𝒋
𝜶𝒋 ,𝝍𝒎 𝒒𝒎−𝒈𝟎𝒂𝒋 -𝒂𝒋
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161. von Neumann measurement

The different wavepackets of the final global state 
do not interfere

Final state in position representation
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Weaker coupling

'2𝒒𝒎(𝝍𝒇 𝒒𝒎 =*
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171. von Neumann measurement

Strong to weak coupling transition
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192. ABL rule

Let’s consider sequential projections
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t

Initial state Final state

Intermediate states
(eigenstates of A)

y

A

?

F

Projection ProjectionProjection

45𝒂𝒊

202. ABL rule

We can compute the probabilities of sequences
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𝑷 645𝒂𝒊 ⟩|𝝍 = 𝒂𝒊 𝝍 𝟐 = 𝝍 9𝝅𝒊 𝝍

y F45𝒂𝒊

𝑷 645𝒂𝒊 , ⟩|𝝓 ⟩|𝝍 = 𝝓 𝒂𝒊 𝟐 𝒂𝒊 𝝍 𝟐 = 𝝓 9𝝅𝒊 𝝍 𝟐

𝑷 5⟩|𝝓 ⟩|𝝍 = <
𝒊

𝑷 645𝒂𝒊 , ⟩|𝝓 ⟩|𝝍 = <
𝒊

𝝓 9𝝅𝒊 𝝍 𝟐

212. ABL rule

Considering conditional probabilities for the 
intermediate results using Bayes’ rule
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𝑷 645𝒂𝒊 ⟩|𝝍 , ⟩|𝝓 =
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𝑷 𝒂, 𝒃 = 𝑷 |𝒂 𝒃 𝑷 𝒃
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y F45𝒂𝒊

222. ABL rule

Considering conditional probabilities for the 
intermediate results using Bayes’ rule
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𝑷 645𝒂𝒊 ⟩|𝝍 , ⟩|𝝓 =
𝑷 645𝒂𝒊 , ⟩|𝝓 ⟩|𝝍

𝑷 5⟩|𝝓 ⟩|𝝍
=

𝝓 9𝝅𝒊 𝝍 𝟐

∑𝒊 𝝓 9𝝅𝒊 𝝍 𝟐

𝑷 𝒂, 𝒃 = 𝑷 |𝒂 𝒃 𝑷 𝒃
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232. ABL rule

Considering conditional probabilities for the 
intermediate results using Bayes’ rule
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𝑷 645𝒂𝒊 ⟩|𝝍 , ⟩|𝝓 =
𝑷 645𝒂𝒊 , ⟩|𝝓 ⟩|𝝍

𝑷 5⟩|𝝓 ⟩|𝝍
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𝝓 9𝝅𝒊 𝝍 𝟐

∑𝒊 𝝓 9𝝅𝒊 𝝍 𝟐

𝑷 𝒂, 𝒃 = 𝑷 |𝒂 𝒃 𝑷 𝒃
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253. Measurement with post-selection

In quantum mechanics, the initial state of a sytem 
does not determine its final state
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Pre-selection and post-selection of a system (PPS)

t

Initial
conditions

Final
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Intermediate
measurement
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263. Measurement with post-selection

Post-selection & strong projective measurements 
involve contextual conditional probabilities

Weak measurements - 2021

CI CF
y A F

Joint and conditional probabilities 
for A and B results

i iP P PF F=
2

i iP a y=

2

iP aF = F

(Bayes – ABL rules)

273. Measurement with post-selection

The three box paradox illustrates the 
contextuality in a PPS projective measurement
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A B CA B Cα β γ

1
3

y a b gé ù= + +ë û

1
3
a b gé ùF = + -ë û

CI :

CF :

Measured projectors
A ap a a= =

A bp b b= =

A gp g g= =

Pre-selection

Post-selection

283. Measurement with post-selection

The three box paradox illustrates the 
contextuality in a PPS projective measurement
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Opening two boxes
2

| 2 22 1 3P a
a

a b g

p y

p y p y p y
F

F
= =

F + F + F

| 1 3Pb F =

| 1 3Pg F =

A B CA B Cα β γ

293. Measurement with post-selection

The three box paradox illustrates the 
contextuality in a PPS projective measurement
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A B CA B Cα β γ
Opening a single box

2

| 22 1P a
a

a b g

p y

p y p p y
F

F
= =

F + F +

| 1Pb F =

| 1 5Pg F =

Counterfactuals! Weak measurements - 2021
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314. Weak measurement

Let us consider the PPS evolution when the 
measurement of A preserve the coherence
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Pre-selection and post-selection of a system (PPS)

t

Initial
conditions

Final
conditions

Intermediate
measurement

y

BA
?

y ¢

y ¢¢

F

¢F

¢¢F

Projection Projection(superposition)

321. von Neumann measurement

We consider the momentum representation of the 
pointer state to describe the measurement
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Initial pointer state

Gaussian state

⟩|𝝍𝒎 𝒑𝒎 =&𝝍𝒎 𝒑𝒎 '(𝒑𝒎 𝒅𝒑𝒎

𝝍𝒎 𝒑𝒎 =
𝟒 𝟐
𝟒 𝝅

𝒆#𝒑𝒎
𝟐 𝝈𝟐

'(𝝍𝒇 𝒑𝒎 = 𝒆,
𝒊
ℏ𝒈𝟎𝑨𝒔⨂𝑷𝒎 ⟩5𝝍𝒔 ⨂ ⟩|𝝍𝒎 𝒑𝒎

331. von Neumann measurement

We project on a momentum state (pointer) and 
on the post-selected state (system)
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Post-selection

𝒑𝒎 𝝍𝒇 𝒑𝒎 = 𝒆,
𝒊
ℏ𝒈𝟎𝒑𝒎𝑨𝒔𝝍𝒎 𝒑𝒎 '(𝝍𝒔

'(𝝍𝒇 𝒑𝒎 = 𝒆,
𝒊
ℏ𝒈𝟎𝑨𝒔⨂𝑷𝒎 ⟩5𝝍𝒔 ⨂ ⟩|𝝍𝒎 𝒑𝒎

Momentum representation

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 = 𝝍𝒎 𝒑𝒎 ⟨ |𝝓𝒔 𝒆,
𝒊
ℏ𝒈𝟎𝒑𝒎𝑨𝒔 '(𝝍𝒔

344. Weak measurement

A weak (PPS) measurement aims at minimizing 
the state perturbation
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Linearization

Weak coupling
0 1g ! "

Post-selection

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 = 𝝍𝒎 𝒑𝒎 ⟨ |𝝓𝒔 𝒆,
𝒊
ℏ𝒈𝟎𝒑𝒎𝑨𝒔 '(𝝍𝒔

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 ≈ 𝝍𝒎 𝒑𝒎 ⟨ |𝝓𝒔 𝟏−
𝒊
ℏ𝒈𝟎𝒑𝒎𝑨𝒔 '(𝝍𝒔

354. Weak measurement

We perform a first order approximation on the 
exponential
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Linearization

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 ≈ ⟨ |𝝓𝒔 𝟏−
𝒊
ℏ𝒈𝟎𝒑𝒎𝑨𝒔 '(𝝍𝒔 𝝍𝒎 𝒑𝒎

= 𝝓𝒔 𝝍𝒔 −
𝒊
ℏ𝒈𝟎 𝝓𝒔 𝑨𝒔 𝝍𝒔 𝒑𝒎 𝝍𝒎 𝒑𝒎

= 𝝓𝒔 𝝍𝒔 𝟏− 𝒊
ℏ𝒈𝟎

𝝓𝒔 𝑨𝒔𝝍𝒔
𝝓𝒔𝝍𝒔 𝒑𝒎 𝝍𝒎 𝒑𝒎

364. Weak measurement

The weak value of the observable A for the pre-
and post-selected states appears in the expression
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Complex number, not bounded

S s S
s w

S S

A
A

y
y

F
=

F

Weak value
(for the PPS)

= 𝝓𝒔 𝝍𝒔 𝟏− 𝒊
ℏ𝒈𝟎

𝝓𝒔 𝑨𝒔𝝍𝒔
𝝓𝒔𝝍𝒔 𝒑𝒎 𝝍𝒎 𝒑𝒎
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374. Weak measurement

The weakness allows to perform a second 
approximation
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Non normalized pointer state after post-selection

= 𝝓𝒔 𝝍𝒔 𝟏− 𝒊
ℏ𝒈𝟎

𝝓𝒔 𝑨𝒔𝝍𝒔
𝝓𝒔𝝍𝒔 𝒑𝒎 𝝍𝒎 𝒑𝒎

= 𝝓𝒔 𝝍𝒔 𝟏− 𝒊
ℏ𝒈𝟎 𝑨𝒔 𝒘𝒑𝒎 𝝍𝒎 𝒑𝒎

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 ≈ 𝝓𝒔 𝝍𝒔 𝒆,
𝒊
ℏ𝒈𝟎 𝑨𝒔 𝒘𝒑𝒎𝝍𝒎 𝒑𝒎

384. Weak measurement

The pointer state is shifted by amounts defined by 
the weak value
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Non normalized pointer state after post-selection

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 ≈ 𝝓𝒔 𝝍𝒔 𝒆,
𝒊
ℏ𝒈𝟎 𝑨𝒔 𝒘𝒑𝒎𝝍𝒎 𝒑𝒎

00fq q g A- =

Average shifts of the pointer variables

Reminder: weak measurement without post-selection

0 RePPS f wq q g A- =𝟎

0 RePPS f wq q g A- =
𝟎

Average shifts of the pointer variables

394. Weak measurement

A very large shift of the pointer is obtained at the 
expense of the post-selection probability
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Non normalized pointer state after post-selection

⟨ |𝝓𝒔 𝒑𝒎 𝝍𝒇 𝒑𝒎 ≈ 𝝓𝒔 𝝍𝒔 𝒆,
𝒊
ℏ𝒈𝟎 𝑨𝒔 𝒘𝒑𝒎𝝍𝒎 𝒑𝒎

S s S
w

S S

A
A

y
y

F
= ®¥

F

Large shifts if 0S SyF ®

( ) 2
| 0S SP y yF µ F ®≈

Average shifts of the pointer variables

0 RePPS f wq q g A- =𝟎

0 RePPS f wq q g A- =
𝟎

Average shifts of the pointer variables

404. Weak measurement

A large deflection is obtained at the expense of 
the post-selected intensity

Strong 
measurement

Weak measurement
with post-selection

Weak measurement
without 

post-selection
 

A
w
=

φ f Âs ψ i

φ f ψ i

 
A =

ψ i Âs ψ i

ψ i ψ i

Fig. credits: J. Tollaksen, Y. Aharonov, S. Popescu. Phys. Today, 63 :061801, Nov 2010 
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( ) ( )0f m j m m j j
j

q q g a ay a y= -å

425. A few characteristics of weak measurements

A large deflection of the pointer state 
is due to interferences

Pointer state after a von Neumann measurement

Strong coupling
2

fy

q

2
fy

q

Weaker coupling

(after interaction but before projection, no post-selection)

Weak measurements - 2021
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( ) ( )0f m j m m j j
j

q q g a ay a y= -å

435. A few characteristics of weak measurements

A large deflection of the pointer state 
is due to interferences

Pointer state after a von Neumann measurement

Weak measurements - 2021

Probability distribution, no post-selection: no interference

Probability distribution with post-selection: interferences

( ) 22
f f j m jj

ay y a y=å

( ) ( )
2 2

f m j j m jj
q ay a j yF = å j jaj = F

445. A few characteristics of weak measurements

A large deflection of the pointer state 
is due to interferences
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Pre-selection and post-selection of a system (PPS)

t

Initial
conditions

Final
conditions

Intermediate
measurement

y

BA
?

y ¢

y ¢¢

F

¢F

¢¢F

Projection Projection(superposition)

455. A few characteristics of weak measurements

Any observable average value can be expressed in 
terms of weak values

Weak measurements - 2021

S s SA Ay y=
Average value

S Si Si s S
i

A Ay y= F Få
Eigenstate basis of post-selection

2

| ,i i

Si s S
S Si w

i iSi S

A
A P Ay y

y
y

y F F

F
= F =

Få å
Weighted average of weak values

465. A few characteristics of weak measurements

Any observable weak value can be expressed in 
terms of weak values of projectors weak values

Weak measurements - 2021

S s S S i S
i i iw w

i iS S S S

A
A a a

y p y
p

y y
F F

= = =
F Få å

1i w
i
p =å

Weak value

(spectral decomposition of A)

Nonclassical, quasi-probability distribution

Completeness relation of projectors

475. A few characteristics of weak measurements

A projector weak value is similar to a nonclassical 
conditional quasi-probability distribution

Weak measurements - 2021

S i S
i w

S S

p y
p

y
F

=
F

|2 2
i i i

i iw

P P
P

p y y y p p y
p

y y
F F

F
F

F F
= = = =

F F

!
!

Projector weak value

« Bayes theorem »

Nonclassical, quasi-probability distribution

483. Measurement with post-selection

The three box paradox illustrates 
several key properties of weak measurements

Weak measurements - 2021

A B CA B Cα β γ

1
3

y a b gé ù= + +ë û

1
3
a b gé ùF = + -ë û

CI :

CF :

Measured projectors
A ap a a= =

A bp b b= =

A gp g g= =

Pre-selection

Post-selection



9

495. A few characteristics of weak measurements

The projector weak values in the 3 box paradox do 
not depend on how many boxes are opened

Weak measurements - 2021

A B CA B Cα β γ
Box weak measurement

1
w

a
a

p y
p

y
F

= =
F

1
w

b
b

p y
p

y
F

= =
F

1
w

g
g

p y
p

y
F

= = -
F

1
w w wa g gp p p+ + =

Sum rule

Consistent weak values

505. A few characteristics of weak measurements

Weak value do not obey the product rule

Weak measurements - 2021

𝝈𝟏𝒚 𝒘
=

𝝓𝒇 𝝈𝟏𝒚 𝝍𝒊

𝝓𝒇 𝝍𝒊
= −𝟏

45𝝍𝒊 = 45𝚿# =
𝟏

𝟐
45↑𝟏𝒛↓𝟐𝒛 − 45↓𝟏𝒛↑𝟐𝒛

H6𝝓𝒇 = H6↑𝟏𝒙↑𝟐𝒚

0
0y

i
i

s
-æ ö

= ç ÷
è ø

0 1
1 0xs
æ ö

= ç ÷
è ø

𝝈𝟐𝒙 𝒘 =
𝝓𝒇 𝝈𝟐𝒙 𝝍𝒊

𝝓𝒇 𝝍𝒊
= −𝟏

𝝈𝟏𝒚 ⊗ 𝝈𝟐𝒙 𝒘
=

𝝓𝒇 𝝈𝟏𝒚 ⊗ 𝝈𝟐𝒙 𝝍𝒊

𝝓𝒇 𝝍𝒊
= −𝟏 ≠ 𝝈𝟏𝒚 𝒘

𝝈𝟐𝒙 𝒘
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51Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values

526. Making sense of anomalous weak values

Weak measurement 
and weak value papers 

Yakir Aharonov’s most cited papers

Weak measurements - 2021

Sensor calibration
in strong measurements 

536. Making sense of anomalous weak values

Anomalous weak values provoke sensor responses 
that never occur with strong measurements

Potential particle path

Sensor

0
+1
+2

−2
−1

Yes

No

A

Sensor observations
in weak measurements      

A
C
B

0
+1
+2

−2
−1

A
C
B

0
+1
+2

−2
−1

A
C
B

0
+1
+2

−2
−1

Detector

Particle?

Weak measurements - 2021

544. Making sense of anomalous weak values

Anomalous weak values are proof of contextuality

Weak measurements - 2021

Ref.: Matthew Pusey, Phys. Rev. Lett. 113 (2014) 200401; Phys. Rev. A 100 (2019) 0402116

𝑨𝒔 𝒘 =*
𝒊
𝒂𝒊 𝝅𝒊 𝒘

Left Fig. credit: Z.-P. Xu et al., Phys. Rev. Lett 124 (2020) 230401
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556. Making sense of anomalous weak values

The imaginary part of the weak value gives the 1st 
order correction to the post-selection probability

State evolution & post-selection probability

Weak measurements - 2021

𝑷𝝐 = ⟨ |𝒇 𝒆#𝒊𝝐𝑯 ⟩|𝒊
𝟐

𝑷𝝐 ≈ ⟨ |𝒇 𝟏 − 𝒊𝝐𝑯 ⟩|𝒊 𝟐 = 𝒇 𝒊 𝟐 𝟏 − 𝒊𝝐 𝑯 𝒘
𝟐

𝑷𝝐 ≈ 𝑷𝟎 𝟏 + 𝟐𝝐 𝐈𝐦 𝑯 𝒘

Reference: J. Dressel et al., Rev. Mod. Phys. 86 (2014) 307

566. Making sense of anomalous weak values

The argument of weak values is related to a 
geometric phase

Gm phase (Berry, Pancharatnam – Bargmann invariant)
Weak measurements - 2021

𝝅𝒓 𝒘 =
𝝓𝒇 𝝅𝒓 𝝍𝒊

𝝓𝒇 𝝍𝒊

Qubit projector

𝐀𝐫𝐠 𝝅𝒓 𝒘 = 𝐀𝐫𝐠
𝝍𝒊 𝝓𝒇 𝝓𝒔 𝝅𝒓 𝝍𝒔

𝝓𝒇 𝝍𝒊
𝟐

= 𝐀𝐫𝐠 𝝍𝒊 𝝓𝒇 𝝓𝒇 𝒓 𝒓 𝝍𝒊

See e.g.: M. Cormann et al., Phys. Rev. A 93 (2016) 042124
M. Cormann and Y. Caudano, J. Phys. A: Math. Theor. 50 (2017) 305302

Polar representation of weak value

576. Making sense of anomalous weak values

The polar representation of qubit weak values can 
be described using the Bloch sphere

Qubit projector

Pauli observable

   
Π r ,w = 1

2

1 +
!
f ⋅
!
r( ) 1 +

!
r ⋅
!
i( )

1 +
!
f ⋅
!
i( )   

argΠ r ,w = − 1
2
Ω irf
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2

1 +
!
f ⋅
!
s( )

1 +
!
f ⋅
!
i( )   

argσ r ,w = − 1
2
Ω irsf

   
!
s = 2

!
r ⋅
!
i( ) !r −

!
i

Geometric phase (Pancharatnam)
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58Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values

Weak measurements: practical aspects

Yves Caudano

Research Unit Lasers and Spectroscopies (UR LLS), Physics Department
Namur Institute for Complex Systems (naXys)
Namur Institute for Structured Matter (NISM)

University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
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60Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values
7. Conceptual experimental set-up
8. Exploiting amplification
9. Probing trajectories
10. Exploiting complex numbers
11. Additional examples
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617. Conceptual experimental set-ups

The pointer deflection in weak measurement
depends on the weak value

Weak measurements - 2021Reference: J. Dressel et al., Rev. Mod. Phys. 86 (2014) 307

 
A

w
=

φ f Âs ψ i

φ f ψ i

627. Conceptual experimental set-ups

The pointer deflection in weak measurement
depends on the weak value

Weak measurements - 2021Reference: J. Dressel et al., Rev. Mod. Phys. 86 (2014) 307

Reference: ?

647. Conceptual experimental set-ups

Example of pre- and post-selection

Weak measurements - 2021Reference: Quentin Duprey, Ph.D. thesis, U. Cergy-Pontoise, 2019 Weak measurements - 2021

65Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values
7. Conceptual experimental set-up
8. Exploiting amplification
9. Trajectories
10. Exploiting complex numbers
11. Additional examples

668. Exploiting amplification

Weak measurements show deviations from 
geometrical optics for optical beam propagation

Goos–Hänchen & Imbert-Fedorov beam shifts & deviations
Weak measurements - 2021

678. Exploiting amplification

Goos–Hänchen & Imbert-Fedorov beam shifts & deviations
Weak measurements - 2021
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688. Exploiting amplification

Weak measurements show deviations from 
geometrical optics for optical beam propagation

Fig. credits: G. Jayaswal, G. Mistura, and M. Merano, Opt. Lett. 38, 1232 – 1234 (2013)

Goos – Hänchen beam shift
Weak measurements - 2021

698. Exploiting amplification

Weak measurements can evidence optical beam 
shifts through weak value amplification

Goos – Hänchen effect
 
Aw =

φ f Âs ψ i

φ f ψ i Weak measurements - 2021Refs: J. Bouhy, master’s thesis (2017), University of Namur

708. Exploiting amplification

Weak measurements can evidence optical beam 
shifts through weak value amplification

Weak measurements - 2021

718. Exploiting amplification

Weak measurements - 2021

728. Exploiting amplification

Weak measurements - 2021

738. Exploiting amplification

Weak measurements - 2021
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748. Exploiting amplification

Weak measurements - 2021

758. Exploiting amplification

Weak measurements - 2021

768. Exploiting amplification

Weak measurements - 2021

778. Exploiting amplification

Weak measurements - 2021

Weak measurements - 2021

788. Exploiting amplification

Spin Hall effect of light: transverse shifts of 
refracted beams according to circular polarizations

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790

Spin-orbit coupling & geometric phase
Weak measurements - 2021

798. Exploiting amplification

The spin Hall effect of light

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790

Weak interaction
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808. Exploiting amplification

The spin Hall effect of light

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790 Weak measurements - 2021

818. Exploiting amplification

The spin Hall effect of light

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790

Weak measurements - 2021

828. Exploiting amplification

The spin Hall effect of light

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790 Weak measurements - 2021

838. Exploiting amplification

The spin Hall effect of light

Reference: Observation of the Spin Hall Effect of Light via Weak Measurements, 
O. Hosten and P. Kwiat, Science 319, (2009) 787-790

1 Angstrom sensitivity, 10 000 enhancement

Weak measurements - 2021

848. Exploiting amplification

Ultrasensitive beam deflection measurement

Reference: Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
P. Ben Dixon et al., Phys. Rev. Lett. 102 (2009) 173601 Weak measurements - 2021

858. Exploiting amplification

Ultrasensitive beam deflection measurement

Reference: Ultrasensitive Beam Deflection Measurement via Interferometric Weak Value Amplification
P. Ben Dixon et al., Phys. Rev. Lett. 102 (2009) 173601
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868. Exploiting amplification 

Weak measurements - 2021

878. Exploiting amplification 

Weak measurements - 2021

888. Exploiting amplification 

Weak measurements - 2021

899. Exploiting amplification 

Weak measurements - 2021

90Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values
7. Conceptual experimental set-up
8. Exploiting amplification
9. Probing trajectories
10. Exploiting complex numbers
11. Additional examples

919. Probing trajectories

Weak measurements can probe very fundamental 
questions about quantum mechanics

Bohmian interpretation of quantum mechanics!

« Observing the average trajectories of single photons in a two-slit Interferometer »
Sacha Kocsis et. al., Science 332 (2011) 1170 – 1173

Weakly measured trajectories

A

B

Interferences

Slits

Weak measurements - 2021
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929. Probing trajectories

Average trajectories of photons

Reference: Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer, 
Sacha Kocsis et. al., Science 332 (2011) 1170 – 1173

Linear
phaseshift

Weak measurements - 2021

939. Probing trajectories

Average trajectories of photons

Reference: Observing the Average Trajectories of Single Photons in a Two-Slit Interferometer, 
Sacha Kocsis et. al., Science 332 (2011) 1170 – 1173

Fig. credits: G. Jayaswal, G. Mistura, and M. Merano, Opt. Lett. 38, 1232 – 1234 (2013)
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949. Probing trajectories

Average trajectories of photons

Reference:
Sacha Kocsis et. al. Weak measurements - 2021

959. Probing trajectories

Average trajectories of photons

Reference:
Sacha Kocsis et. al.

Weak measurements - 2021

9610. Probing trajectories

Weak measurements - 2021

9710. Probing trajectories
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9810. Probing trajectories

Weak measurements - 2021

99Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values
7. Conceptual experimental set-up
8. Exploiting amplification
9. Probing trajectories
10. Exploiting complex numbers
11. Additional examples
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10010. Exploiting complex numbers

Direct measurement of the quantum 
wavefunction

Reference: Direct measurement of the quantum wavefunction, 
J. Ludeen et. al., Nature 474 (2011) 188 – 191

𝒑 = 𝟎

Weak measurements - 2021

10110. Exploiting complex numbers

Direct measurement of the quantum 
wavefunction

Reference: Direct measurement of the quantum wavefunction, 
J. Lundeen et. al., Nature 474 (2011) 188 – 191

Weak measurements - 2021

1029. Exploiting complex numbers

Weak measurements - 2021

1039. Exploiting complex numbers
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1049. Exploiting complex numbers

Weak measurements - 2021

1059. Exploiting complex numbers

Weak measurements - 2021

1069. Exploiting complex numbers

Weak measurements - 2021

10710. Exploiting complex numbers

Direct measurement of the quantum 
wavefunction

Reference: Direct measurement of the quantum wavefunction, 
J. Lundeen et. al., Nature 474 (2011) 188 – 191

Weak measurements - 2021

108Talk outline

Introduction to quantum weak measurements
and weak values

1. von Neumann measurement scheme
2. Aharonov – Bergman – Leibowitz rule (ABL)
3. Measurements with post-selection
4. Weak measurements (with post-selection)
5. A few characteristics of weak measurements
6. Making sense of anomalous weak values
7. Conceptual experimental set-up
8. Exploiting amplification
9. Probing trajctories
10. Exploiting complex numbers
11. Additional examples

Weak measurements - 2021

10911. Additional examples
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11011. Additional examples

Example of pre- and post-selection

Weak measurements - 2021Reference: Quentin Duprey, Ph.D. thesis, U. Cergy-Pontoise, 2019 Weak measurements - 2021

11111. Additional examples

Weak measurements - 2021

11211. Additional examples

Weak measurements - 2021

1137. 

Weak measurements - 2021

11411. Additional examples

Weak measurements - 2021

11510. Probing trajectories
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11610. Probing trajectories

Weak measurements - 2021

11711. Additional examples

Weak measurements - 2021

11811. Additional examples

Weak measurements - 2021

11911. Additional examples

Weak measurements: 
fundamental and practical aspects

Yves Caudano

Research Unit Lasers and Spectroscopies (UR LLS), Physics Department
Namur Institute for Complex Systems (naXys)
Namur Institute for Structured Matter (NISM)

University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium


