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MISCELLANEOUS: SINGLE PHOTON WAVE FUNCTION. THOMAS DURT

I. WAVE FUNCTION OF A MONOMODE SINGLE-PHOTON: N=1 FOCK STATE.

In many situations, it is appropriate to describe the single photon as a single-mode photon, in which case its
physical properties are equivalent to those of a quantized one-dimensional harmonic oscillator whose Hamiltonian can

be expressed in terms of the photon number operator N̂ through Ĥ = ~ω(N̂ + 1/2), ω =
√

k
m being the classical

pulsation of the oscillator.

The eigenstates of Ĥ (and N̂) are the so-called Fock states and, in this approach, a single photon is nothing else

than an elementary excitation or N=1 Fock state |N = 1〉 that is to say it is an eigenstate of N̂ for the eigenvalue

N = 1 (and thus an eigenstate of Ĥ for the eigenvalue 3~ω/2). Such a state can be obtained after letting act the

creation (raising) operator â+ = 1√
2
(q̂ − ip̂q) (where q = x/

√
~
mω and pq = ∂

i∂q ) on the vacuum state (which is itself

a N=0 Fock state |N = 0〉, of energy-eigenvalue ~ω/2).

Note that the Hamiltonian of a one-dimensional harmonic oscillator (Ĥ = p̂2x/2m + kx̂2/2) can be expressed in
terms of the creation and destructions operators (resp. â+ = 1√

2
(q̂ − ip̂q) and â = 1√

2
(q̂ + ip̂q) through the relation

Ĥ = ~ω(â+â+ 1/2) = ~ω(N̂ + 1/2) = ~ω(
∑∞
N=0,1,2...N |N〉〈N | +1/2).

If we consider propagation in the vacuum, very often the mode corresponds to a plane wave of given polarisation;
in the case of guided light the mode is often associated to the mode used to carry the light. In any case it is worth
noting that the variable q introduced above does not represent the position of the photon in real, physical space; it
can be interpreted as the amplitude of the electric field.

If we wish to describe photons propagating in space and time, a multimodal description in terms of wave packets
is often more appropriate as we shall see now.

II. SPATIO-TEMPORAL WAVE FUNCTION OF A MULTIMODE SINGLE-PHOTON.

To be able to address the probability to observe a photon at a given time in a given place, let us introduce a
one-photon state (in Schrödinger representation)

| ψ (t)〉 =
∑
λ=±

∫
d3k cλ (k, t = 0) e−ic||k||t |1λ,k〉 (1)

where â†(λ) (k) |0〉 =|1λ,k〉 represents the quantum state of a single-mode single-photon for a (plane wave) transverse

mode of wave vector k and polarisation λ. It is obtained after letting act the raising (creation) operator â+λ,k associated

to this mode on the vacuum state here denoted | 0〉. The vacuum state itself is the tensor-product of the vacuum
states associated to each transverse mode ( |0〉=⊗ |0λ,k〉,∀λ,k).

The associated Glauber first order correlation function [1, 2] reads

ψE (x, t) = ic
∑
λ=±

∫
d3k

(2π)3

√
||k||ei(k·x−c||k||t)cλ (k, t = 0) ε(λ) (k) (2)

where ε(λ) (k) represents the direction of polarisation of the corresponding mode.

As is well-established in the standard theory of photodetection [2], the modulus squared of ψE (x, t) in the expression
(2) is proportional to the probability of detecting a photon at time t in a detector located at position x and can thus
be interpreted as a kind of single photon wave function. In analogy with the classical Poynting density, the photon
wave function ψE (x, t) can also be interpreted as the single photon electric field generated by the quantum dipole.
It is a complex vector with 3 components. Its components transform under Lorentz transformations in the same way
that Maxwell’s electric field’s components do transform.
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III. PHOTON WAVE FUNCTION SEEN AS AN EFFECTIVE SINGLE PHOTON ELECTRIC FIELD
AND QUANTUM POYNTING VECTOR.

A. Single photon wave function and Maxwell‘s equations.

The photon wave function approach emphasizes the links between Maxwell theory and quantum optics. For instance,
it makes it possible to construct a local quantum Poynting vector in terms of the (complex) electric and magnetic
single photon wave functions, in full analogy with Maxwell’s classical optics. To show this, let us firstly consider the
quantum expression of the potential vector operator:

Â (x, t) =
∑
λ=±

∫
d3k
(2π)3

1√
||k||

[
â(λ) (k, t) ε(λ) (k) eik·x − â†(λ) (k, t) ε∗(λ) (k) e−ik·x

]
where the creation-destruction

operators associated to plane-wave modes (of wave vector k and polarisation κ) â(κ) (k, t) = â(κ) (k, t = 0) e−ic||k||t

and â†(κ) (k, t)=â†(κ) (k, t = 0) e+ic||k||t obey canonical commutation rules:[
â(κ) (k, t) , â†(λ) (q, t)

]
= δ (k− q) δκλ. (3)

In analogy with Maxwell’s theory, the vector operator is associated to the electric field operator (in the Coulomb

gauge where the electric potential is equal to zero) through Ê (x, t) = −∂
∂t Â (x, t), so that

Ê (x, t) = ic
∑
λ=±

∫
d3k

(2π)3

√
||k||

[
â(λ) (k, t) ε(λ) (k) eik·x − â†(λ) (k, t) ε∗(λ) (k) e−ik·x

]
(4)

Similarly, the magnetic field operator obeys B̂ (x, t) = rotÂ (x, t) so that

B̂(x, t) = i
∑
λ=±

∫
d3k

(2π)3
(1/
√
||k||)

(
k × ε(λ) (k)

) [
â(λ) (k) e−i(c||k||t−k·x) − â†(λ) (k) ei(c||k||t−k·x)

]
,

It can be shown by straightforward computation that the Glauber first order correlation function (2) can be expressed
in terms of the electric field operator through Glauber’s extraction rule

ψE (x, t) ≡ 〈0 | Ê (x, 0) | ψ (t)〉

=
∑
λ=±

∫
d3k 〈0 | Ê (x, 0) cλ (k, t = 0) e−ic||k||t |1λ,k〉 (5)

Remark that higher orders correlations associated to N photon wave functions can be estimated in a similar fashion;
for instance the 9 components of the two-photon wave function obey

ψEk,l (x1,x2, t) ≡ 〈0 | Êk (x1, 0) Êl (x2, 0) | ψ (t)〉 (6)

Inspired by Maxwell theory, let us define, making use of the magnetic field operator, the (transverse) magnetic single-
photon wave function as follows:

ψB (x, t) ≡ 〈0|B̂+(x, t = 0) | ψ (t)〉 . (7)

A straightforward calculation yields

ψB (x, t) = ic
∑
λ=±

∫
d3k

(2π)3
(1/
√
||k||)

(
k × ε(λ) (k)

)
ei(k·x−c||k||t)cλ (k, t) . (8)

One can show that Maxwell’s equations written explicitly for these single-photon wave functions are obeyed:

∇×ψE(x, t) = −∂tψB(x, t) (9a)

∇×ψB(x, t) =
1

c2
∂tψ

E(x, t) (9b)

∇ ·ψE(x, t) = 0 (9c)

∇ ·ψBx, t) = 0 (9d)
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B. Quantum versus classical.

In other words, in the vacuum, the single-photon wave function propagates according to Maxwell’s equation(s).
This could suggest that Maxwell fields are already quantized to begin with but we do not share this interpretation:
it is only in particular situations that the quantum wave function “lives” in the three dimensional, physical, space.
Most often, whenever entanglement is present, a three dimensional representation does not hold anymore and must be
replaced by a description in the configuration space. A good example of this feature can be found in appendix 1 where
it is shown that it is impossible to explain HOM experiment [3] resorting only to Maxwell’s theory. Ultimately the
reason for this is that the two-photon wave function is entangled and requires to be interpreted in the 6-dimensional
configuration space and not in the usual 3 dimensional space.

There are numerous situations however where Maxwell’s theory alone makes it possible to interpret the observations.
This is the case for instance when the source of light is either a laser source or a thermal source. Then the N photon
wave function associated to light which is prepared at time t = 0 in the monomode (polychromatic) Fock state [4, 5]

| N〉= (ˆ̃a†)N√
N !
| N = 0〉 (with ˆ̃a† =

∑
λ=±

∫
d3k c̃λ (k) ε(λ) (k) â†(λ) (k)) can be shown to factorize into the product of

identical single-photon wave functions:

ψE (x1,x2, ...,xN, t) = ψE (x1, t) ·ψE (x2, t) ...ψ
E (xN, t) (10)

where each individual (single photon) wave function obeys Maxwell equations as we have shown before.

C. Quantum expression of the single photon Poynting vector.

The local quantum Poynting vector reads 1
2µ0

((ψE (x, t))∗ ×ψB (x, t) +ψE (x, t)× (ψB (x, t))∗).

In full analogy with classical Maxwell’s equations, one can also show that the density
ε0
2

[
|ψE (x, t) |2 + c2|ψB (x, t) |2

]
of the photonic population at a given place (x, y, z) and a given time t, obeys the

conservation equation

∂

∂t
(
ε0
2

[
|ψE (x, t) |2 + c2|ψB (x, t) |2

]
) + div.

1

2µ0
((ψE (x, t))∗ ×ψB (x, t) +ψE (x, t)× (ψB (x, t))∗) = 0 (11)

In analogy with classical fluid dynamics, it is natural to define a local velocity as follows v (x, t):

v (x, t) =
1

2µ0
((ψE(x,t))∗×ψB(x,t)+ψE(x,t)×(ψB(x,t))∗)

(
ε0
2 [|ψE(x,t)|2+c2|ψB(x,t)|2]) , and one may consistently interpret the weak measurement of

local velocities [6] in terms of single-photon Poynting velocities of this type [7, 8].
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V. APPENDIX 1: HOM EXPERIMENT IN TERMS OF TWO-PHOTON WAVE FUNCTIONS

In the HOM experiment [3], two single photons are sent along two orthogonal beams on a semi-transparent mirror.
Let us denote
ΨHOR
IN and ΨV ERT

IN

the corresponding wave functions.
Then, the IN state, prior to the passage through the mirror is described by the symmetrized two-photon wave

function
(1/
√

2)(ΨHOR
IN (x1)ΨV ERT

IN (y2)+ΨHOR
IN (x2)ΨV ERT

IN (y1))
After passing through the mirror, each reflected wave gets dephased by a π/2 factor, while the transmitted waves

do not undergo any dephasing.
At the output of the mirror we get thus

(1/
√

2)((1/
√

2)(iΨHOR−ref
OUT (y1) + ΨHOR−trans

OUT (x1))(1/
√

2)(ΨV ERT−trans
OUT (y2) + iΨV ERT−ref

OUT (x2))
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+(1/
√

2)((1/
√

2)(iΨHOR−ref
OUT (y2) + ΨHOR−trans

OUT (x2))(1/
√

2)(ΨV ERT−trans
OUT (y1) + iΨV ERT−ref

OUT (x1))

If the two incoming photons share a same wave function, that is to say if

ΨHOR−ref
OUT (y) = ΨV ERT−trans

OUT (y) = ΨOUT (y) and ΨHOR−trans
OUT (x) = ΨV ERT−ref

OUT (x) = ΨOUT (x),

the expression above simplifies to

(i/
√

2)(ΨHOR−trans
OUT (x1)ΨV ERT−ref

OUT (x2) + ΨHOR−ref
OUT (y1)ΨV ERT−trans

OUT (y2))

=(i/
√

2)(ΨOUT (x1)ΨOUT (x2) + ΨOUT (y1)ΨOUT (y2)),

which means that either both photons are located along the horizontal axis (XOUT ) or they are located along the
vertical axis (YOUT ). The absence of simultaneous clicks in the horizontal and vertical detectors at the output is thus
a signature of the equivalence of the wave functions of the photons sent along the incoming horizontal and vertical
axes.

Abbildung 1: HOM dip

COMMENTS
Note that if we send two identical photons through the same input port, for instance if at the input the wave

function reads

ΨHOR
IN (x1)ΨHOR

IN (x2),

no entanglement is present and at the output we get the wave function

(1/2)(iΨHOR−ref
OUT (y1) + ΨHOR−trans

OUT (x1))(iΨHOR−ref
OUT (y2) + ΨHOR−trans

OUT (x2))

so that the probability to find two photons in the same output port is 1/4, and in different output ports 1/2, just
like in Maxwell’s theory. This result also holds if we send N identical photons through the same input port (which
corresponds to a N-photon multimode Fock state discussed before), the statistics of clicks is again the same as in
Maxwell‘s theory.

The HOM dip experiment appears to constitute a very useful test in the context of quantum cryptography where
the single photons used for encoding a quantum key must be indistinguishable. Indeed, if for instance the signal is
encoded along the single photon polarisation, the spatial wave functions of the photons must be the same. If this
was not the case, a malicious spy could extract some extra-information about the key by carrying out tomographic
measures of the spatial wave functions.
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VI. APPENDIX 2: PILOT WAVE INTERPRETATION FOR (SINGLE) PHOTONS: STILL UNSOLVED
PROBLEMS CONCERNING SINGLE PHOTON “TRAJECTORIES”.

Each time we can associate a conservation equation of the type ∂P
∂t + ∇ · j = 0 to a given probability, the mean

particle current

j(x, t) = P (x, t)ẋ (12)

can be used to define the Bohm-de Broglie particle trajectories x via the velocity ẋ [11]. When one takes this idea
on to special relativity, a problem arises regarding the extraction of photon trajectories. Despite the existence of a
continuity equation for the electromagnetic energy,

∂w

∂t
+ ∇ · S = 0 where w =

ε0
2

[
E2 + c2B2

]
and S =

1

µ0
E ×B, (13)

that goes by the name of Poynting’s Theorem, we cannot define a four-current jµ that could account for the photon
trajectories. One can rewrite (13) into

∂µT
µ0 = 0 (14)

using the zeroth row (or column) of the stress-energy tensor Tµν consisting of

T 00 = ε0
2

[
E2 + c2B2

]
,

T 0j = 1
µ0

(E ×B)j ,

T ij = −ε0
[
EiEj + c2BiBj − δij

2 (E2 + c2B2)
]
,

(15)

but since Tµ0 transforms like

Tµ0 →
(
Tµ0

)′
= Λµρ Λ0

σ T
ρσ (16a)

under Lorentz transformations (with transformation matrix Λµν ) it is an unsuitable candidate for jµ that should
transform like

jµ → (jµ)
′

= Λµν j
ν . (16b)

Of course, this is a classical argument but it remains valid after quantisation.
We can indeed use (11) to build the quantised stress-energy tensor analogous to (15) by substituting E for ψ(E) and

B for ψ(B). Problems occur however because the density and the current do not transform as a relativistic 4-vector.
For instance, the Poynting vector could be estimated to be equal to 0 for a certain observer, and also for an observer

moving at constant velocity relatively to the first observer, which makes it impossible to interpret the Poynting vector
in terms of “realistic” photon velocities as is exxplained in [12]:

“. . . If we go on to situations in which the field does not correspond to a plane wave, we will not even get the
same trajectories in different frames. For example, consider an electrostatic field E in the x-direction. The
Poynting vector is zero, and this would therefore correspond to particles at rest. Let us consider a Lorentz
transformation in the x-direction. Under this transformation E remains in this direction and there is no
field H. Therefore the Poynting vector is still zero in the new frame. This would mean that the particle
would have to be at rest in both frames which is clearly impossible. The reason for this result is, of course,
that the energy momentum is a tensor and so cannot be regarded as describing a flux of particles. . . ”

One could try other definitions of photon wave functions, like for instance the wave function obtained by “extracting”
the effective potential vector instead of exctracting the effective electric field via

ψA (x, t) ≡ 〈0 | Â (x, 0) | ψ (t)〉

=
∑
λ=±

∫
d3k 〈0 | Â (x, 0) cλ (k, t = 0) e−ic||k||t |1λ,k〉 (17)



6

It is even possible [10] to add a zero component to this 3-vector (an effective electric potential) which has the merit
to deliver a Lorentz covariant 4-vector, but one can show [10] that this 4-vector obeys D’Alembert equation for which
the associated conserved density is not definite-positive. The same problem appears for instance in the case of massive
bosons described by the Klein-Gordon equation. We must thus face the following dilemma [11] if we wish to associate
velocities to the photon (and to bosons in general [13]):

-either the trajectories are not Lorentz covariant
-or they are not associated to a positive density.
In both cases no satisfactory realistic interpretation à la de Broglie-Bohm holds [9].
This difficulty maybe explains why many authors are reluctant to associate a wave function to the photon [14].

Another explanation of this désamour could be the Newton-Wigner theorem which makes it possible to associate a
position operator to zero mass particles of spin 0 and 1/2, but not to spin 1 particles as the photon.

We consider however the N photon wave function as a useful tool, making it possible to develop a first quantization
description of light, and in particular to provide a spatio-temporal description of the photon distribution, be it in
configuration space whenever entanglement is present.
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