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Preamble: H-W group in L2(R): definition.
The elements of the Heisenberg-Weyl group are obtained by composing

• “translations” in space (x): ei
δx·p̂
~

• with “boosts” (translations in momentum space (p)): ei
δp·x̂
~ ;

• In position representation (x), the generator of translations is p̂ = ~
i
∇̂x and

ei
δx·p̂
~ f (x) = eδx·

∂
∂xf (x) = f (x + δx).

• In momentum representation (k) the generator of boosts is x̂ = 1
i
∇k and

ei
δp·x̂
~ g(k) = e(δp/~)·

∂
∂kg(k)=g(k + (δp/~))

• The H-W group is thus a representation of the Galilei group (translations in
phase-space).
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Preamble: H-W group in L2(R): definition.

• Boosts and translations do not commute;

• Making use of the Baker-Campbell-Hausdorff formula
Z = X + Y + 1

2
[X, Y ] + 1

12
([X, [X, Y ]]− [Y, [X, Y ]) + ...

which is the solution for Z to the equation eX · eY = eZ ,

• it is straightforward to derive Weyl relations:

ei
δx·p̂
~ ei

δp·x̂
~ =ei

δx·δp
~ ei

δp·x̂
~ ei

δx·p̂
~

• wikipedia: ...These relations may be thought of as an exponentiated ver-
sion of the canonical commutation relations; they reflect that translations
in position and translations in momentum do not commute...

• Discrete representations of the H-W group are most oftena very fidel to their
counterpart in the continuum as we shall show.

aX. Lu, P. Raynal and B-G Englert, PHYSICAL REVIEW A 85, 052316 (2012), Mutually unbiased
bases for the rotor degree of freedom.
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Preamble: coherent states in L2(R).
Displacement operators in L2(R) possess numerous applications, e.g. coherent
states of an harmonic oscillator are displaced vacuum states:
Two definitions of a coherent state |α >
• Definition 1: a coherent state is an eigenstate of the lowering (annihilation)

operator a, for a complex eigenvalue α.

• Definition 2: such a coherent state can also be defined as follows:
|α >coherent= expαa

†−α∗a|E0 >= expi
√

2mω/~((−Re.α)·p̂/mω+(Im.α)·x̂)|E0 >,

where |E0 > is the ground state of the harmonic oscillator.

• Indeed, making use of the Baker-Campbell-Hausdorff formula,

eαa
† · e−α∗a = e|α|

2/2eαa
†−α∗a;

therefore eαa
†−α∗a|E0 >= e−|α|

2/2eαa
† · e−α∗a|E0 >,

but e−α
∗a|E0 >= |E0 > and (a†)N |E0 >=

√
N !|EN > so that

eαa
†−α∗a|E0 >= e−|α|

2/2eαa
†|E0 >=e−|α|

2/2
∑∞

N=0
αN
√
N !

N !
|EN >=

|α >coherent, establishing the equivalence of definitions 2 and 1.
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Preamble. qubit case, displacements in dimension 2.

• The translation group contains two elements: the sigma X operator that
translates the states of the computational basis, and its square, the identity
operator (sometimes denoted sigma 0):

σ0 =

(
1 0
0 1

)
, σx =

(
0 1
1 0

)
• The qubit counterpart of the momentum representation consists of eigen-

states of the displacement operator (as is the case in the continuum case).

• These are the states

(
1√
2
1√
2

)
and

(
1√
2

− 1√
2

)
• The qubit boosts displace these eigenstates. They thus consist of two el-

ements, the identity and the sigma X operator sandwiched in a Hadamard

transform; this is the sigma Z operator σz =

(
1 0
0 −1

)

• one can check that σz

(
1√
2
1√
2

)
=

(
1√
2

− 1√
2

)
.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Preamble. qubit case, displacements in dimension 2.

• Finally composing the translations and the boost generators we get sigma Y
(up to a global phase).

iσy = i

(
0 −i
i 0

)
,

• The discrete counterpart of the Heisenberg-Weyl group in dimension 2
(qubits) is the Pauli group.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Preamble. qubit case,

displacements in dimension 2 and Bell states.
As is well-known, (two qubit) Bell states are defined as follows
|B0

0〉 = 1√
2
(|+〉AZ ⊗ |+〉BZ + |−〉AZ ⊗ |−〉BZ )

|B0
1〉 = 1√

2
(|−〉AZ ⊗ |+〉BZ + |+〉AZ ⊗ |−〉BZ )

|B1
0〉 = 1√

2
(|+〉AZ ⊗ |+〉BZ − |−〉AZ ⊗ |−〉BZ )

|B1
1〉 = 1√

2
(|+〉AZ ⊗ |−〉BZ − |−〉AZ ⊗ |+〉BZ ).

They are in one to one correspondence with the Pauli operators (to pass from
Pauli operators to Bell states it suffices to formally replace |...〉〈′′′| by |...〉AZ ⊗
|′′′〉BZ .
The trick also holds in dimension d, where (two qudit) Bell states obey, in the
most simple cases, the following definition:

|Bm,n〉 = d−1/2
d−1∑
k=0

γ(k.n)|k〉 ⊗ |k + m(modulod)〉 (1)

(where γ = e
i2π
d ). In dimension d = 2 we recover the Bell states defined above.
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Preamble. qubit case,

displacements in dimension 2 and Bell states.
In dimension d Bell states obey the following identity (cfr exercices):

V n
m,A ⊗ 1B|B0,0〉A,B = |Bm,n〉A,B (2)

where the discrete (qudit) displacement operators are defined as follows

V j
i =

d−1∑
k=0

γ((k+i)·j)|k + i〉〈k|; i, j : 0...d− 1 (3)

In particular, when d = 2, these displacement operators are (up to global phase)
the Pauli operators (cfr exercices):

V 0
0 = σ0 =

(
1 0
0 1

)
, V 0

1 = σx =

(
0 1
1 0

)
V 1
1 = iσy = i

(
0 −i
i 0

)
,while V1

0 = σz =

(
1 0
0 −1

)
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Applications of the Pauli group to Quantum Information:

• Quantum information cannot be cloned but it can be teleported, densely
coded and entanglement can be swapped as we shall now show. The dis-
placement group plays a prior role in these applications.

• Potential applications concern relays for QKD, based on entanglement
swapping and teleportation.

• Such relays would allow to refresh keys on long distances, getting rid of the
limitations imposed by the absoption in optical fibres (50 percent every 50
kilometer-joined with the dark count rate in detectors).

• To the contrary of QKD, teleportation and entanglement swapping did not
mature enough to reach the level of a commercialisable technology, but
presently several research groups devote a lot of energy to quantum memo-
ries, a crucial challenge to be met along the road of massive production of
entanglement-based relays...

• Before focusing on tomographic applications of the displacement group, we
shall give a quick overlook of teleportation, dense coding and entanglement
swapping.
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Qubit teleportation: theory.

• The ”equation” of teleportation is:

(
1∑
i=0

φi|i〉A)|B0,0〉B,C =
1∑

m,n=0

1

2
|Bm,n〉A,B(σm,n(

d−1∑
i=0

φi|i〉C)), (4)

where the σm,n represent the conveniently labelled Pauli operators.
Other expression (see exercises for the proof):

(φ0|0〉A + φ1|1〉A)(
1√
2

(|0〉B|0〉C + |1〉B|1〉C))

=
1

2
(|0〉A|0〉B + |1〉A|1〉B)

1√
2

(φ0|0〉C + φ1|1〉C)

+
1

2
(|0〉A|0〉B − |1〉A|1〉B)

1√
2

(φ0|0〉C − φ1|1〉C)

+
1

2
(|0〉A|1〉B + |1〉A|0〉B)

1√
2

(φ0|1〉C + φ1|0〉C)

+
1

2
(|0〉A|1〉B − |1〉A|0〉B)

1√
2

(φ0|1〉C − φ1|0〉C)
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Qubit teleportation: in practice.

• Bob and Charles share the two-qubit Bell state |B0
0〉.

• Alice sends a qubit prepared in an arbitrary state φ0|0〉A + φ1|1〉A to Bob.

• Bob measures the pair in the Bell basis.

• By doing so he projects, whenever he gets the result m,n (m and n vary
from 0 to 1) Charles’s state onto σm,n(φ0|0〉C + φ1|1〉C).

• Bob uses a classical communication line to inform Charles about which
result he got.

• Charles applies onto his photon the operator σm,n; as the square of Pauli
operators is equal to unity, he recovers the state (φ0|0〉C + φ1|1〉C), which
is a teleported version of Alice’s original state.
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Warning: difference between Star Trek teleportation

and Quantum Teleportation.

• No matter is teleported during quantum teleportation (Charles’s qubit was
already present).

• In accordance with the no signaling theorem (APPENDIX), no classical in-
formation is teleported: Charles has to wait until he receives Bob’s message
before he can reproduce Alice’s state. Otherwise, his qubit is in a fully noisy
state (no ”in”formation implies no form!).

• Nevertheless, a continuous variable (the location of a point on the Bloch
sphere) gets teleported and this requires only a classical communication of
two classical bits (m,n).

Remark:
During a teleportation process, the copy is created at Charles’s level while the
original qubit that was prepared by Alice gets simultaneously destroyed: tele-
portation is a ”no cloning process”.
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Quantum Dense Coding.
After preparing the Bell state |B0,0〉A,B, one can generate the three other Bell
states by applying onto one of the qubits the Pauli operators.
This is a particular case of the aforementioned identity

V n
m,A ⊗ 1B|B0,0〉A,B = |Bm,n〉A,B (5)

where the discrete (qudit) displacement operators are defined as follows

V j
i =

d−1∑
k=0

γ((k+i)·j)|k + i〉〈k|; i, j : 0...d− 1 (6)

In particular, when d = 2, these displacement operators are (up to global phase)
the Pauli operators.
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Quantum Dense Coding.
In the practice, the identity V n

m,A ⊗ 1B|B0,0〉A,B = |Bm,n〉A,B can be imple-
mented as follows:
Alice, by acting merely on the qubit in her possession, can transform the Bell
state |B0,0〉A,B in one of the four Bell states.
Those states form an orthonormal basis which makes it possible to realize a
protocol of “dense coding” defined as follows:

• Alice and Bob share a Bell state (|B0,0〉A,B ).

• Alice applies to the qubit in her possession one of the four Pauli operators,
chosen at random, (these are the identity operator σ0, σX , σY , and σZ).

• Afterwards, she sents to Bob her qubit and Bob measures the two qubits
(the one sent by Alice and the one in his possession since the beginning) in
the Bell basis.

• By doing so, Bob gets informed about the choice made by Alice in her
choice of the Pauli operator.

Finally:
Alice sent one qubit, but two classical bits of information (this is impossible
with a classical support for the information: one classical bit cannot be com-
pressed). This is the essence of DENSE CODING.
All this generalizes to the case of qudits (dimension d): then, by sending one
physical, quantum dit, a qudit, Alice is able to send two classical dits.
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Entanglement swapping. Theory
Swapping means permutation.

• The “equation” (basic identity of) of qubit entanglement swapping is:

|B0,0〉A,B|B0,0〉C,D =
1

4

1∑
i,j=0

|Bi,j〉B,C|Bi,j〉A,D =
1∑

i,j=0

|Bi,j〉B,Cσi,j|B0,0〉A,D,

where the σm,nsymbols represent the Pauli operators and where we made
use of the basic identity of dense coding V n

m,A ⊗ 1B|B0,0〉A,B = |Bm,n〉A,B,
in the qubit case (where V n

m = σm,n).
The demonstration of a similar basic identity of qudit entanglement swap-
ping is left as an exercise.
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Entanglement swapping: In practice.

• Alice and Bob share the-entangled-Bell state |B0
0〉AB. Charles and Daisy

share the-entangled-Bell state |B0
0〉CD.

Alice and Daisy can be located in principle in arbitrary distant regions but
Bob and Charles are supposed to meet each other, in order to put their bits
in common for measuring them in the-entangled-Bell basis

• If by doing so they measure the result m,n (m and n can take two values:
0 and 1, and each result has probability one fourth), then Alice and Daisy
qubits get projected onto the state |Bm

n 〉AD = σAm,n|B0
0〉AD.

• Bob and Charles warn Alice and Daisy, on a public channel (slower than
light of course) about their result (one result among four possible results).

• Alice lets act onto her qubit the operator σm,n, in the case that Bob and
Charles obtained the result (m,n); by doing so she transforms the state of
the pair of qubits that she shares with Daisy into the bell state |B0

0〉AD.

• Conclusion, the entanglement that Alice shared with Bob and Daisy with
Charles has been swapped; at this level Alice and Daisy share a maximally
entangled state, although possibly they were never in contact in the past...

• Morality: my friends’s friends’s friends are also my friends.
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Remark.
As mentioned before, relays based on entanglement swapping and teleportation
would make it possible to increase arbitrarily the distance of QKD. It is indeed
impossible to amplify a quantum signal due to the no-cloning theorem although
nothing forbids to teleport it...



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Quantum displacements:tomographic applications.

• In the rest of this talk we shall focus on tomographic applications.

• Quantum state tomography in finite dimension d aims at estimating the
d2 − 1 real parameters necessary for characterizing the density operator
representing the state of a qudit.

• We shall firstly describe some geometric properties of phase-space repre-
sentations, like Weyl and Wigner representations, in the continuum (L2(R)).

• We shall then describe related tomographic protocols involving the (discrete
version of the) Heisenberg-Weyl group, which consists of d2 displacements
in a discrete d times d phase-space associated to the qudit.
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Quantum displacements:tomographic applications.

• Some of these protocols are directly related to their counterpart in infinite
dimension, like Weyl and Wigner tomography.

• New structures appear throughout this study: mutually unbiased bases
(MUBs) and symmetric informationally complete POVMs (SICs).

• In dimensions 2 and 3, MUBs, SICs, Wigner and Weyl tomography are
intimately connected to each other as we shall see...
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H-W group in L2(R): applications.

• Displacement operators are orthonormal relatively to the Trace product;
therefore a linear operator Ô can be expressed as a superposition of dis-
placement operators through Groenewold’s formulaa

Ô = (1/h)
∫ ∫

dpdqeipx̂/~+ixp̂/~Tr(e(−ipx̂−ixp̂)/~)Ô)

• In particular, when Ô is a density operator ρ̂, the expression
Tr(e(−ipx̂−iqp̂)/~)ρ̂) delivers a tomographic representation of ρ̂.

• This complex distribution changes by a phase factor under Galilean trans-
formations:
e−(iδpx̂+iδqp̂)/~)e(−ipx̂−ixp̂)/~)e(iδpx̂+iδxp̂)/~)=ei((xδp−pδx)/~) · e(−ipx̂−ixp̂)/~).
• It is worth noting that this phase is related to the symplectic scalar product:

xδp− pδx = (x, p)

(
0 1
−1 0

)(
δx
δp

)
aCurtright, T. L.; Fairlie, D. B.; Zachos, C. K. (2014). A Concise Treatise on Quantum Mechanics in

Phase Space. World Scientific.
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H-W group in L2(R): applications.

• The Wigner distribution delivers an alternative representation of ρ̂.

• It is defined as w(x, p) = (2/h)
∫
dye−2ipy/~ < x + y|ρ̂|x− y >.

• Making use of eixp̂/~|y >= |y + x > and < y|eixp̂/~ =< y − x|, of Weyl
relations (ei

δx·p̂
~ ei

δp·x̂
~ =ei

δx·δp
~ ei

δp·x̂
~ ei

δx·p̂
~ ), and of the fact that the parity operator

anticommutes with x̂ and p̂, it is easy to show that

w(x, p) = (2/h)Tr.(eixp/~e2(ipx̂/~)e(2ixp̂/~) · ˆPar. · ρ̂)

= (2/h)Tr.(e2(ipx̂/~+ixp̂/~) · ˆPar. · ρ̂)

= (2/h)Tr.( ˆPar. · e−2(ipx̂/~+ixp̂/~) · ρ̂)

= (2/h)Tr.(e(ipx̂/~+ixp̂/~) · ˆPar. · e−(ipx̂/~+ixp̂/~) · ρ̂),

where ˆPar. represents the parity operator: ˆPar.|y >= | − y >.

• This means that the Wigner distribution is proportional to the trace
of the product of ρ̂ with the displaced parity operator: w(x, p) =

(2/h)Tr.Ŵ (x, p) · ρ̂
where the Wigner operator obeys

Ŵ (x, p) = e(ipx̂/~+ixp̂/~) · ˆPar. · e−(ipx̂/~+ixp̂/~).
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H-W group in L2(R): applications.
Some remarks: Weyl distribution

• Let us introduce the displacement operators from now on denoted Ûx,p and
called the Weyl operators defined as follows

Ûx,p = eixp/2~eipx̂/~eixp̂/~ = ei(px̂/~+xp̂)/~.

Ûx,p is a unitary operator; it is not self-adjoint however. It is easy to show,
e.g. with the help of Weyl relations (ei

δx·p̂
~ ei

δp·x̂
~ =ei

δx·δp
~ ei

δp·x̂
~ ei

δx·p̂
~ ), that if

(x1, p1) is parallel to (x2, p2), then

Ûx1,p1 .Ûx2,p2 =Ûx1+x2,p1+p2
• Both the Wigner and Weyl operators form a basis of the set of operators,

orthonormal relatively to the Trace-scalar product

< Ô1, Ô2 >= Tr.(Ô†1Ô2)

• From now on we shall call the Weyl distribution of ρ (denoted um,n) the
(set of all) amplitudes of the expansion of ρ in the Um,n basis: um,n =

Tr.(Ûm,nÔ)
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H-W group in L2(R): applications.
Some remarks: Weyl versus Wigner distribution.

• As we have seen, the Wigner distribution is proportional to the trace
of the product of ρ̂ with the displaced parity operator: w(x, p) =

(2/h)Tr.Ŵ (x, p) · ρ̂
where the Wigner operator obeys

Ŵ (x, p) = e(ipx̂/~+ixp̂/~) · ˆPar. · e−(ipx̂/~+ixp̂/~).

• Moreover, Tr.(e−i(ap̂+bx̂) ˆPar.)=e−iab/2
∫
dy < y|e−iap̂eiby| − y >

=e−iab/2
∫
dy < y − a|eiby| − y >

=e−iab/2
∫
dyeibyδ(2y − a)

=(1/2)e−iab/2eiab/2 so that ˆPar. = 1
2h

∫
dxdpÛx,p.

The parity operator appears thus to be a superposition with equal amplitudes
of all displacement operators Ux,p.
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H-W group in L2(R): applications.
Some remarks: Weyl versus Wigner distribution.

• Finally, the Wigner distribution appears to be, in this perspective, the
symplectic transform of the Weyl distribution:
w(x, p) = (2/h)Tr.Û2x,2p

ˆPar.O=(2/h)Tr.U2x,2p
1
2h

∫
dx′dp′Ûx′,p′O

= 1
h2

∫
dx′′dp′′ei

(x,p)

 0 1
−1 0


 x

′′

p′′


~ (Tr.Ûx′′,p′′O), where the symplectic

product of
(
x
p

)
and

(
x′′

p′′

)
is equal to x · p′′ − p · x′′.
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H-W group in L2(R): applications.
The Wigner distribution enjoys appealing properties:

• 1. the Wigner distribution of any self-adjoint operator (ρ̂ in particular) is
real valued (but not positive-definite, henceforth it is often called a quasi-
distribution).

• 2. it transforms “naturally” under Galilean transformations.

• 3. its marginals have the same properties as in the case of a classical,
positive-definite probability distribution over phase-space.
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H-W group in L2(R): applications.
1. the Wigner distribution of a self-adjoint operator is real valued.
PROOF:

• If w(x, p) = (2/h)Tr.(eixp/~e(2ipx̂/~)e(2ixp̂/~) · ˆPar. ·O) and O = O†,

then w∗(x, p) = (2/h)Tr.(O† · ˆPar.
†
· (eixp/~e(2ipx̂/~)e(2ixp̂/~))†)

= (2/h)Tr.(O · ˆPar. · (e−ixp/~e−2(ixp̂/~)e−2(ipx̂/~))
= (2/h)Tr.(O · (e−ixp/~e2ixp/~e(2ipx̂/~)e(2ixp̂/~)) · ˆPar.)

= (2/h)Tr.(e2(ipx̂/~+ixp̂/~) · ˆPar. ·O) = w(x, p)
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H-W group in L2(R): applications.
2. it transforms “naturally” under Galilean transformations.
PROOF:

• If w(x, p) = (2/h)Tr.(eixp/~e2(ipx̂/~)e2(ixp̂/~) · ˆPar. · ρ) and ρ′ =
Uδx,δpρU

†
δx,δp,

then, w′(x, p) = (2/h)Tr.(eixp/~e2(ipx̂/~)e2(ixp̂/~) · ˆPar. · ρ′)
= (2/h)Tr.(eixp/~e2(ipx̂/~)e2(ixp̂/~) · ˆPar. · Uδx,δpρU †δx,δp)
= (2/h)Tr.(U †δx,δpe

ixp/~e2(ipx̂/~)e2(ixp̂/~) · ˆPar. · Uδx,δpρ)

Now,Uδx,δp = eiδxδp/2~ei(δpx̂/~eiδxp̂/~ andU †δx,δp = e−iδxδp/2~e−iδxp̂/~e−iδpx̂/~

thus w′(x, p) =

(2/h)Tr.(e−iδxp̂/~e−iδpx̂/~eixp/~e2ipx̂/~e2ixp̂/~ · e−iδpx̂/~e−iδxp̂/~ · ˆPar.ρ)

= (2/h)Tr.(ei(x−δx)(p−δp)/~e2(i(p−δp)x̂/~)e2i(x−δx)p̂/~) · ˆPar. · ρ)

= (2/h)Tr.(e2(i(p−δp)x̂/~+i(x−δx)p̂/~) · ˆPar. · ρ)

= w(x− δx, p− δp)
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H-W group in L2(R): applications.
3. its marginals have the same properties as in the case of a classical, positive-
definite probability distribution over phase-space.
PROOF:

•
∫
dpw(x, p) =

∫
dp(2/h)

∫
dye−2ipy/~ < x + y|ρ̂|x− y >

=(1/h)~
∫
dy
∫
d(2p/~)e−2ipy/~ < x + y|ρ̂|x− y >

=(1/h)2π~
∫
dyδDirac(y) < x + y|ρ̂|x− y >=< x|ρ|x >

• Reexpressing the density operator in the momentum representation, and
making use of the properties of Fourier transforms, one can show by di-
rect computation that the Wigner distribution
w(x, p) = (2/h)

∫
dye−2ipy/~ < x + y|ρ̂|x− y >

possesses a nearly similar expression in both representations:
w(x, p) = (2/h)

∫
dre+2irx/~ < ˜p + r|ρ̂| ˜p− r > where |p̃ > is a plane

wave in the position representation, of wave number k = p/~.
so that by the same computation as above we get∫
dxw(x, p) =< p|ρ̂|p >.
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H-W group in L2(R): applications.
3. its marginals have the same properties as in the case of a classical, positive-
definite probability distribution over phase-space.
PROOF (continued):

• In order to compute
∫
dxw(x, p), an alternative approach consists of ex-

ploiting the Fourier duality between position and momentum and the prop-
erties of symplectic transforms.

• To see this, let us consider the action of x̂ and p̂ in momentum representa-
tion. To make things simpler let us introduce dimensionless variables q and
k:
q=x/xcar., where xcar. is a characteristic length;

k̂ = (1/i) ∂
∂q

= (1/i)∇̂q, and ΨF (k) =< k|Ψ >= 1√
2π

∫
dqΨ(q)e−ik·q

After integrating by parts we find that
(1/
√

2π)
∫
dkeikq(1/i)∇kΨ

F (k) = −q · (1/
√

2π)
∫
dkeikqΨF (k),

while (1/
√

2π)
∫
dkk · eikqΨF (k) = (1/i)∇q(1/

√
2π)

∫
dkeikqΨF (k)

so that passing from momentum to position representation (1/i)∇k corre-
sponds to minus the multiplicative operator q while the multiplicative oper-
ator k corresponds to the operator (1/i)∇q .
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H-W group in L2(R): applications.

• In the same vein one can show that Ũm,n corresponds to U−n,m where the
tilded operator refers to momentum representation and the non-tilded op-
erator to the position representation. It is worth noting that the mapping
between (m,n) and (m′, n′) preserves the symplectic product:(

0 1
−1 0

)
=

(
0 −1
1 0

)T (
0 1
−1 0

)(
0 −1
1 0

)
• Now, the Wigner distribution is as already shown, the symplectic transform

of the Weyl distribution: w(x, p)

=(2/h)Tr.U2x,2p
ˆPar.O = 1

h2

∫
dx′′dp′′ei

(x,p)

 0 1
−1 0


 x

′′

p′′


~ (Tr.Ux′′,p′′O)

• Conclusion: w̃m′,n′ = wm,n where
(
m′

n′

)
=

(
0 −1
1 0

)(
m
n

)
.
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H-W group in L2(R): applications.

• The marginals obtained after integrating along vertical lines in the momen-
tum representation are thus equal to the marginals obtained after integrating
along horizontal lines in the position representation. The transformation(

0 −1
1 0

)
permutes these two directions. We find thus that the marginals

obtained after integrating over x (p) are the probabilities to find p (x).

• What is less knowna is that the marginal property generalizes in this
way to arbitrary directions in the phase-space.

• It can be shown by lengthy but elementary computations that these di-
rections are related to the vertical direction by a symplectic transfor-

mation parameterized by a real parameter α as follows:
(

0 1
−1 −α

)
• It is worth noting that the mapping between (m,n) and (m′, n′) preserves

the symplectic product:(
0 1
−1 0

)
=

(
0 1
−1 −α

)T (
0 1
−1 0

)(
0 1
−1 −α

)
a W. K. Wootters, Ann. Phys. (N.Y.) 176 1 (1987), A Wigner function formalism of finite-state

quantum mechanics.
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H-W group in L2(R): applications.

• When α = 0 it sends the position representation onto a complementary
representation which coincides with the momentum representation.

• In the new basis the displacement operators are the same as in the position
basis but they are permuted:
Un′,−αn′−m=Ũα

m′,n′

• In particular Um,−αm=Ũα
0,m.

• It maps the vertical lines parallel to (m = 0, n = 1) onto parallel lines of
slope −α. Accordingly, marginals along this direction deliver probabilities
associated to the generalized Fourier states |k̃α > which diagonalize the
displacement operators Um,−αm.

• The inverse mapping also preserves the symplectic product.

• All these properties are well-known and are related to the Clifford groupa.

• Similarly, the Wigner operators are also permuted one by one under this
change of representation: Wm,n = W̃ α

−αm−n,m (where again the tilded oper-
ator with an upper index α refers to the generalised momentum representa-
tion and the non-tilded operator to the position representation).

aM. Appleby, I. Begtsson and M. Chaturvedy, Journal of Mathematical Physics 49, 012102 (2008),
Spectra of phase point operators in odd prime dimensions and the extended Clifford group.
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H-W group in L2(R): applications.

• Definition: “A collection of orthonormal bases of a d dimensional
Hilbert space is said to be mutually unbiased if whenever we choose
two states from different bases, the modulus squared of their in-
product is equal to 1/d. ”

• Here there appears an infinity of bases constituted by the generalized
Fourier states |k̃α > which diagonalize the displacement operators Um,−αm.

• < x|k̃α >= 1√
2π
ei(k·q+αq

/2)

• They are all mutually unbiased relatively to the eigen states of the position
operator because | < x|k̃α > | is constant, ∀k, x ∈ R.
• They are also mutually unbiased relatively to each other because whenever
α 6= α′, one can show that | < k̃α|k̃′α′ > | is constanta , ∀k, k′ ∈ R.

aX. Lu, P. Raynal and B-G Englert, PHYSICAL REVIEW A 85, 052316 (2012), Mutually unbiased
bases for the rotor degree of freedom.
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H-W group in L2(R): applications.

• Striation and MUB statesa.

•
a W. K. Wootters, Ann. Phys. (N.Y.) 176 1 (1987), A Wigner function formalism of finite-state

quantum mechanics.
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Weyl distribution.

• One can check the following useful identity:
|x >< x| = (1/h)

∫
dpe−ipx/~U0,p

Indeed,
(1/h)

∫
dpe−ipx/~U0,p = (1/h)

∫
dpe−ipx/~eipx̂/~

= (1/h)
∫
dpe−ipx/~eipx̂/~

∫
dx̃|x̃ >< x̃|

=(1/h)
∫
dx̃
∫
dpe−ipx/~eipx̃/~|x̃ >< x̃|=

(1/2π)
∫
dx̃
∫
d(p/~)eip(x̃−x)/~|x̃ >< x̃| = |x >< x|;
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Weyl distribution.

• The identity |x >< x| = (1/h)
∫
dpe−ipx/~U0,p is the Fourier invert of

another useful identity: U0,p =
∫
dxeipx/~|x >< x|.

Note that all operators U0,p are diagonal in the position representation.

• Let us now consider an arbitrary direction in phase-space, passing through
the origin, parameterised, in dimensionless variables, by the equation
pq − αq = 0.

• The displacements along this direction are represented by the operators
Uq,−αq = ei(qk̂−αqq̂) where k̂ = (1/i) ∂

∂q
in the q representation. They all

commute.

• Making use of the aforementioned invariance under symplectic transforms,
we get (passing again to dimensionless variables for simplicity)

Uq,−αq =
∫
dkeikx|k̃α >< k̃α| where |k̃α > is a generalised plane wave

basis.

• The invert Fourier relation reads |k̃α >< k̃α|=(1/2π)
∫
dqe−ikqUq,−αq
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Weyl distribution.

• To estimate the density operator, a possible strategy consists of measur-
ing the transition probabilities in the MUBs, which makes it possible via a
Fourier transform to estimate Tr.(Ux,pρ).

• ρ = (1/h)
∫ ∫

dpdqeipx̂/~+ixp̂/~Tr(e(−ipx̂−ixp̂)/~)ρ)
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Weyl distribution.

• Relation between MUBs and Weyl (displacement) operators.

•
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Wigner distribution.

• Another useful identity relates Wigner operators to MUB states:
|x >< x| =

∫
dpWx,p

• Indeed, having in mind that
(1/h)

∫
dpe−ipx/~U0,p = |x >< x|,

we get

∫
dpW0,p =

∫
dp 1

h2

∫
dx′′dp′′ei

(0,p)

 0 1
−1 0


 x

′′

p′′


~ Ux′′,p′′

= (1/h)
∫
dp 1

2π~

∫
dx′′dp′′e−i

px′′
~ Ux′′,p′′=(2π/(2πh))

∫
dp′′

∫
dx′′δDiracx′′ Ux′′,p′′

= (1/h)
∫
dpU0,p = |x = 0 >< x = 0|;

making use of property 2 (Wigner distribution transforms “naturally” under
Galilean transformations), we finally get
|x >< x| =

∫
dpWx,p which is directly related to the marginal property.
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H-W group in L2(R): applications.
TOMOGRAPHIC APPLICATIONS: Wigner distribution.

• In L2(R), if we wish to perform Wigner tomography of an unknown quan-
tum state, there is, a prioria, no gain in measuring the transition probabilities
to the basis states associated to the striation of the phase-space.

• A succesful strategy consists of directly measuring the average values of
the Wigner operators; this has been done by the team of Serge Haroche
(Nobel prize 2012).

aThis is no longer so in finite dimensions, as we shall see.
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H-W group in L2(R): applications.

• Haroche Wigner tomography via entangled atoms passing through a QED
cavity.

•
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H-W group in L2(R): applications.

• Haroche Wigner tomography via entangled atoms passing through a QED
cavitya

•

ahttp://www.lkb.upmc.fr/cqed/wp-content/uploads/sites/14/2016/06/2009-LKB-AERES-
StateReconstruction−low.pdf
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H-W group in L2(R): applications.

• Haroche Wigner tomography: movie of decoherence of a cat state in a lossy
cavity QEDa.

•
ahttp://www.lkb.upmc.fr/cqed/non-local-quantum-states/
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Finite dimensions.
Passing from the continuum to finite dim. d: discretization.

• All aforementioned properties are integrally preserved in d dimensional
Hilbert spaces provided d is a prime powera: d = pm, with p prime and
m a positive integerb.

aW. K. Wootters and B. D. Fields, Ann. Phys. (N.Y.) 191, 363 (1989), Optimal state-determination by
mutually unbiased measurements, K. S. Gibbons, M. J. Hoffman and W. K. Wootters, Phys. Rev. A 70
062101 (2004), Discrete phase space based on finite fields.

bT. Durt, B-G Englert, I. Bengtsson, and K. Zyczkowski: IJQI, vol. 8, nr 4, 535-640 (2010), On
mutually unbiased bases.
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Prime power dimensions: d = pm.
The main properties are listed below:

• There exist d + 1 MUBs.

• MUB states are eigenstates of the (discrete) Heisenberg-Weyl operators
(phase-space displacement operators).

• To each MUB corresponds a set of d parallel straight lines, each of them
corresponding to a MUB state.

• Two different MUB states are either associated to parallel lines (if they be-
long to the same MUB) or to non-parallel lines (otherwise) which intersect
in one point in phase-space; this represents the overlap between states from
different MUBs (which is equal to 1/

√
d in modulus).

• To each point in the d2 dimensional phase-space we can associate a phase-
space localisation operator (Wigner operator).

• Moreover, in prime power dimensions, this Wigner operator is equal to
the sum of the projectors onto MUB states associated to straight lines
passing through that point minus the identity, divided by d.
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Prime power dimensions: d = pm.

• Wigner (phase-space localisation) operators and MUB states.
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Dimensional dependency.
What is special with prime power dimensions?

• The key ingredient is the existence of a finite field with d elements (Galois
showed in the 19th century that finite fields exist if and only their cardinality
is a prime power).

• Let us denote⊕G and�G the corresponding operations.

• In prime dimensions they are nothing else than the cyclic addition and mul-
tiplication, that is to say, addition and multiplication modulo d and expres-
sions of MUBs are easy to tacklea..

• In prime power but non-prime dimensions (d = pm, m 6= 1), the situation
is more involved.

• Let us consider for instance d = 4...
aIvanovic, Geometrical description of quantal state determination, Phys.A:Math.Gen.143241, 1981.
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Dimensional dependency.
What is special with prime power dimensions?, APARTE: Dimension 4.

• There exist, in dimension 4, 4.3.2=24 permutations between states from a
same basis. Two subgroups of this group of 24 elements are particularly
interesting (see picture next page):

• The cyclic group with 4 elements generated by the permutation
P1 = |0〉 → |1〉;|1〉 → |2〉;|2〉 → |3〉;|3〉 → |4〉.
It also contains the identity P0, and the power 2 and 3 of the generator:
P2 = |0〉 → |2〉;|1〉 → |3〉;|2〉 → |0〉;|3〉 → |1〉.
P3 = |0〉 → |3〉;|1〉 → |0〉;|2〉 → |1〉;|3〉 → |2〉.
• The “Galois” group that contains the identity and the 3 following permuta-

tions:
P ′2 = |0〉 → |2〉;|1〉 → |3〉;|2〉 → |0〉;|3〉 → |1〉.
P ′1 = |0〉 → |1〉;|1〉 → |0〉;|2〉 → |3〉;|3〉 → |2〉.
P ′3 = |0〉 → |3〉;|1〉 → |2〉;|2〉 → |1〉;|3〉 → |0〉.
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Dimensional dependency.
What is special with prime power dimensions?, APARTE: Dimension 4.

•
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Dimensional dependency.
What is special with prime power dimensions?, APARTE: Dimension 4.
On the basis of the composition law of these (commutative) groups it is easy to
define a (commutative) addition law through the relation
Pi.Pj = Pi+j (i, j = 0, 1, 2, 3).
We find so the following addition tables:

+cycl. . 0. 1. 2. 3.

0. 0 1 2 3

1. 1 2 3 0

2. 2 3 0 1

3. 3 0 1 2

(7)

⊕G . 0. 1. 2. 3.

0. 0 1 2 3

1. 1 0 3 2

2. 2 3 0 1

3. 3 2 1 0

(8)
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Dimensional dependency.
What is special with prime power dimensions?, APARTE: Dimension 4.
On the basis of these addition tables it is also easy to define a (commutative)
multiplication law that is distributive relatively to the addition:,
We find so the following multiplication tables:

.cycl.. 0. 1. 2. 3.

0. 0 0 0 0

1. 0 1 2 3

2. 0 2 0 2

3. 0 3 2 1

(9)

Remark:
The addition and the “cyclic” multiplication are nothing else than the MOD-
ULO 4 addition and multiplication.
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Dimensional dependency.
What is special with prime power dimensions?, APARTE: Dimension 4.
The Galois multiplication table is the following:

�G . 0. 1. 2. 3.

0. 0 0 0 0

1. 0 1 2 3

2. 0 2 3 1

3. 0 3 1 2

(10)

• Such algebraic structures are called “COMMUTATIVE RINGS”;
the Galois multiplication is moreover endowed with a remarkable property:
THERE IS NO DIVIDER OF ZERO, EXCEPTED ZERO ITSELF...

• Therefore the Galois ring is also called a FIELD (finite field). In french
fields are called corps.

• Evariste Galois derived in the 19th century atechnique for generating such
addition and multiplication d times d tables for arbitrary prime power values
of d.

• No finite field exists of cardinality different from pm...
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Dimensional dependency.
What is special with prime power dimensions?

• As already mentioned, in prime power dimensions, the same properties as
those described in the continuous case regarding MUBs, Wigner operators
and so on are valid.

• They can be established by direct construction (constructive approach).

• The key ingredient is the existence of a finite field with d elements endowed
with an addition⊕G and a multiplication�G.

• Because there is no dividor of 0, the neutral for addition, in a field, excepted
0, the set of equations a� x+ b� y = c defines an affine structuration of
the (x, p) plane such that there exist d+ 1 sets of d parallel lines for which
affine axioms are satisfied:
-two distinct parallel lines have no point in common
-two non-parallel lines intersect in only one point
-each point belongs to d + 1 non-parallel lines and so on...
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Dimensional dependency.
What is special with prime power dimensions?

• One can also show that:

d−1∑
j=0

γ
(j�Gi)
G = dδi,0 (11)

γiG · γ
j
G = γ

(i⊕Gj)
G (12)

where γGis a well-chosen phase (pth root of unity: γG = ei.2π/p).

• These identities are the basis of all the calculus necessary for characterizing
MUBs in prime power dimensions.
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Dimensional dependency.
What is special with prime power dimensions?

• Besides, the Galois addition factorizes; for instance, in dimension 4, if we
express quartits like tensorial products of 2 qubits: |0〉4 = |0〉2 ⊗ |0〉2,
|1〉4 = |0〉2 ⊗ |1〉2, |2〉4 = |1〉2 ⊗ |0〉2, |3〉4 = |1〉2 ⊗ |1〉2,we can check at
the level of the addition table that
if |i〉4 = |i1〉2 ⊗ |i2〉2, et |j〉4 = |j1〉2 ⊗ |j2〉2,
then |i⊕G j〉4 = |i1 ⊕mod2 j1〉2 ⊗ |i2 ⊕mod2 j2〉2.
• This means that the (quartit here) addition FACTORIZES to the modulo p

(=2 here) addition COMPONENTWISE. In dimension pm, the Galois ad-
dition always FACTORIZES to the modulo p (=2 here) addition COMPO-
NENTWISE.

• The Galois multiplication table is more involved.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Dimensional dependency.
What is special with prime power dimensions?

• Remark:
Some of these properties generalize to the displacement operators that are
defined through the MODULO operations:

• Example:

d−1∑
j=0

γ
(j.mod.i)
mod. = dδi,0 (13)

γimod. · γ
j
mod. = γ

(i+mod.j)
mod. (14)

• Here γmod. is the dth root of unity: γmod. = ei.2π/d.

• In both cases, calculus is made possible in virtue of the properties abovea.
aT. Durt: “A new expression for mutually unbiased bases in prime power dimensions”, J. Phys. A:

Math. Gen. 38 (2005) 5267-5283.
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Dimensional dependency.
What is special with prime power dimensions?

• In prime power dimensions, it is possible to build d+ 1 MUBs by the same
technique as in the continuum.

• On the basis of the field operations, one can now define discrete displace-
ment operatorsoperators: the generalised Pauli or Heisenberg-Weyl group
which constitutes a discrete version of their continuous counterpart studied
before.

• Such operators are can be defined as followsa:

V j
i =

d−1∑
k=0

γ
((k⊕Gi)�Gj)
G |k ⊕G i〉〈k|, (15)

aT. Durt: “A new expression for mutually unbiased bases in prime power dimensions”, J. Phys. A:
Math. Gen. 38 (2005) 5267-5283.
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Dimensional dependency.
What is special with prime power dimensions?

• We can derive d + 1 MUBs by simultaneously diagonalising well-chosen
subgroups of the generalized Pauli group (V (α�Gl)

l , equal to Ul,α�Gl up to a
global phase factora).

• We found for instance that in odd prime power dimension pm (with p a
prime diferent from 2), MUBs can be expressed as followsb:

|ẽik〉 =
1√
d

d−1∑
q=0

γ	Gq�GkG (γ
((α�Gq�Gq)/G2)
G )|e0q〉, (16)

where the states of the generalized Fourier bases are denoted |ẽik〉 and those
of the so-called computational basis (the discrete analog of theX basis) are
denoted |e0q〉.

aThis phase is fixed by requiring that the U operators form a group:
Ul1,α�Gl1 .Ul2,α�Gl2=Ul1⊕l2,α�G(l1⊕l2,). In odd prime power dimensions for instance, we find
Um,n = γm�Gn/G2Vm,n, very similar to its counterpart in the case of the continuum.

bT. Durt: “A new expression for mutually unbiased bases in prime power dimensions”, J. Phys. A:
Math. Gen. 38 (2005) 5267-5283.
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Dimensional dependency.
What is special with prime power dimensions?

• Warning:
the parameterization chosen in the case of finite dim. Hilbert spaces leads
to the inverse Fourier transform instead of the Fourier transform. It is not
difficult to choose parameterizations that would exhibit more consistency
when passing to the limit of the continuum. We will not do it however
because this would breal consistency with many bibliographic references.
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Dimensional dependency.
What is special with prime power dimensions?

• Remark:
-In even prime power dimensions (2m m qubits), things is more compli-
cated, as is well-known: even and odd cardinality finite fields are totally
different; we finda:

|ẽlj〉 =
1√
N

N−1∑
q=0

γ	Gk�GkG αj	k (17)

where αjl = Πm−1
q,n=0i

(j�G(lq2q)�G(ln�2n)) with l =
∑m−1

n=0 ln2
n =

∑m−1
q=0 lq2

q.
aT. Durt: “A new expression for mutually unbiased bases in prime power dimensions”, J. Phys. A:

Math. Gen. 38 (2005) 5267-5283, A. Eusebi and S. Mancini, “Deterministic quantum distribution of a
d-ary key ”, Quant. Inf. Comp. 9 (2009) 950, T. Durt, B-G Englert, I. Bengtsson, and K. Zyczkowski:
“On mutually unbiased bases”, IJQI, vol. 8, nr 4, 535-640 (2010).
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Application: quantum tomography

in prime power dimension d = pm.

• As there are d + 1 MUBs in dimension d = pm, that each von Neumann-
measurement of an operator diagonal in a MUB provides d−1 independent
parameters, and that the results collected in different MUBs are also inde-
pendent, we get d2 − 1 independent parameters.

• This is precisely equal to the number of independent parameters that are
necessary in order to reconstruct the density matrix of an unknown d-level
quantum state. We can thus perform a FULL TOMOGRAPHIC process by
measuring transition probabilities in d + 1 MUBs.

• Example: d = 2: we get the d2 − 1 = 3 Bloch (Stokes) coefficients
by measuring the transition probabilities in 3 MUBs (in polarimetry: we
measure the populations of circular left and right polarisations, horizontal-
vertical and diagonal.)
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Dimensional dependency.
What about other (non prime-power) dimensions?

• In dimension 6, no affine plane existsa, in relation with Euler’s conjecture
concerning the problem of the 36 officers.

•
aTarry G 1900 C. R. Assoc. Fr. Av. Sci. Natl 1 122, 2170
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Dimensional dependency.
What about other (non prime-power) dimensions?

• ...Progress since the work of Tarry in 1900 has been slowa. Finite affine
planes do NOT exist if d = 4k + 1 or d = 4k + 2 and d is not the sum of
two squares or if d = 10....

• It is conjectured that affine planes only exist when d is a prime power.

• It is also conjectured that maximal sets of d + 1 MUBs only exist in prime
power dimensions.

• Another conjecture concerns the maximal number of MUBs in non prime
power dimensionsb: it would be equal to the maximal number of different
directions in a d times d plane satisfying the postulates of affine geometry
(3 in the case of MUBs).

• Let us now focus on dimensions 2 and 3.
aM. Appleby, I. Begtsson and M. Chaturvedy, Journal of Mathematical Physics 49, 012102 (2008),

Spectra of phase point operators in odd prime dimensions and the extended Clifford group.
bM. Saniga, M. Planat and H. Rosu, J. Opt. Quantum Semiclass. B6, L19 (2004), Mutually unbiased

bases and finite projective planes, T. Durt and S. Weigert, J. Phys. A: Math. Theor. 43 402002, 2010,
Affine constellations without mutually unbiased counterparts.
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QUBITS (d=2), permutations versus

displacement operators in the qubit space.

• Most simple case: two-level systems (QUBITS): d=2.

• Two possible permutations: the identity and the negation (exchange of 0
and 1) which permutes the qubit basis state |0〉 with |1〉.
• We can express the identity by the identity operator |0〉〈0| + |1〉〈1|.
• The operator associated to the negation can be written |1〉〈0| + |0〉〈1|.
• When |0〉 and |1〉 correspond to the North and South poles of the Stokes-

Poincare-Bloch sphere: (along the Z axis: |0〉=|+〉Z; |1〉=|−〉Z ), this op-
erator is equal to the Pauli σx operator itself!

• This operator is diagonal in the basis ( 1√
2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉)).
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QUBITS (d=2),

displacement operators in the qubit space.

• We can now repeat the reasoning and consider the two possible permuta-
tions of the eigenstates of σx.

• We find then the identity operator while the operator that corresponds to the
negation is equal to |0〉〈0| − |1〉〈1|.
• When |0〉 and |1〉correspond to the North and South poles (along Z), this

operator is the Pauli operator σz!

• The composition of the operators σz et σx is equal, up to a global phasea, to
σy.

• σy is diagonal in the basis ( 1√
2
(|0〉 + i.|1〉), 1√

2
(|0〉 − i|1〉)).

• We find so the 4 Pauli operators:, the identity and the 3 σ operators.
aThis phase is fixed by imposing that the corresponding displacement operator is self-adjoint. Here we

find U0,1 = V0,1 = σZ , U1,0 = V1,0 = σX , and U1,1 = iV1,1 = σY



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

3 MUBs in the qubit space.

• Such operators form a group (up to global phases), the Pauli group. It is the
qubit counterpart of the Heisenberg-Weyl group.

• This group itself consists of 3 subgroups which consist of the identity and
one of the 3 operators σx,y,z. These 3 subgroups are diagonal in the bases:
(|0〉, |1〉)
( 1√

2
(|0〉 + |1〉), 1√

2
(|0〉 − |1〉))

and ( 1√
2
(|0〉 + i.|1〉), 1√

2
(|0〉 − i|1〉)).

• Such bases are said to be ”mutually unbiased” (MUBs):

Definition: “A collection of orthonormal bases of a d dimensional
Hilbert space is said to be mutually unbiased if whenever we choose
two states from different bases, the modulus squared of their in-
product is equal to 1/d. ”

• The transition probabilities between states from different MUBs are all
equal to 1/d (in the qubit case they are 50-50 probabilities as when we
toss an UNBIASED COIN).
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Pauli displacement operators.

and (Bloch) tomography.

• Pauli operators form an orthonormalised basis of the linear operators (rela-
tively to the Trace-norm product).

• As a consequence, any qubit DENSITY MATRIX or density operator is a
linear combination of Pauli operators:
ρ̂ = 1

2
(σ0 + kxσx + kyσy + kzσz).

We recognize here Bloch parameters (NMR) or Stokes-Jones-Poincaré pa-
rameters (polarimetry).

• In order to estimate these parameters it is enough to measure the transition
probabilities in the 3 corresponding bases (MUBs).

• By doing so we realize a QUANTUM TOMOGRAPHIC PROCESS so to
say we can estimate the qubit quantum state.
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Remarks.

• The tomographic procedure based on MUBs is OPTIMAL because there is
NO REDUNDANCY between data collected in different bases;
the information is thus never wasted during the data acquisition, and there
is no redundancy in the acquisition.

• MUBs are a manifestation of complementarity.
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Application: Wigner distribution in the qubit case

(dimension 2).

• The qubit Wigner distribution is equal to the average value of Wigner oper-
ators.

• It is not clear however what would be the counterpart of the parity operator
in dimension 2 because 0 = −0 modulo 2 and 1 = −1 modulo 2.

• The discrete parity operator is however defined unambiguously by the dis-
crete version of the identity ˆPar. = 1

2h

∫
dxdpUx,p. which reads

ˆPar. = 1/d2
∑

m,n∈0,1...d−1Um,n

• Applying this property and deriving the all Wigner operators after dis-
placing W00 in the 2 times 2 phase-space, we find the Wigner distribu-
tion (expressed in function of Bloch-Stokes parameters defined through
~k =< ~σ >) 

w00 = 1
4

[1 + kx + ky + kz]
w01 = 1

4
[1− kx − ky + kz]

w10 = 1
4

[1 + kx − ky − kz]
w11 = 1

4
[1− kx + ky − kz]

(18)
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Application: Wigner distribution in the qubit case

(dimension 2).

• As their continuous counterparts the Wigner operators obey the following
constraintsa:
(a) Translational invariance: W(i1,i2) = (V i2

i1 )†W(0,0)V
i2
i1 ;

(b) The sum of the d2 = 4 Wigner amplitudes Tr.ρ̂.W(i1,i2) is normalized
to unity;
(c) Marginals: if we consider STRAIGHT LINES in phase-space defined by
the relations a�G i1 = b�G i2 ⊕G c, with a b and c elements of the finite
Galois field with 2 elements ({0, 1}), where addition and multiplication
are defined modulo 2, the averages of Wigner operators along such lines (
marginals) are equal to a projector onto one of the MUBs states.

• Moreover, marginals along non-intersecting parallel lines correspond to
projectors onto orthogonal states of a same MUB while marginals taken
along non-parallel directions correspond to projectors onto states from dif-
ferent MUBs.

a W. K. Wootters, Ann. Phys. (N.Y.) 176 1 (1987), A wigner function formalism of finite-state quantum
mechanics.
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Qubit Wigner operators.
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Qubit Wigner operators.

• Moreover the following property, valid in finite dimension only, delivers an
alternative definition of the Wigner operatorsa:
... the Wigner operator in a point (x, p) is proportional to the sum of the
projectors onto all MUB states related to straight lines passing through that
point minus the identity operatora...

aM. Appleby, I. Begtsson and M. Chaturvedy, Journal of Mathematical Physics 49, 012102 (2008),
Spectra of phase point operators in odd prime dimensions and the extended Clifford group.
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Qubit Wigner operators.

• Proof:
the Wigner operator at the origin is equal to the parity operator:

ˆPar. = 1/d2
∑

m,n∈0,1...d−1Um,n
Integrating along straight lines in the finite phase-space, and making use of
the identities∑

n∈0,1...d−1U0,n = d|e00 >< e00| and∑
m∈{0,1...d−1}Um,αm = d|ẽα0 >< ẽα0 |,

we find that the Wigner operator at the origin is equal to 1/d times the sum
of the projectors on the 0th basis states of the d + 1 MUBs minus d times
U00. This is so because we countedU00 in the summation d+1 times and not
only once. Now, the null displacement U00 is equal to the identity operator
so that we finally obtain the following identity (only valid in finite prime
power dimensions):

Ŵ00 = ˆPar. = (1/d)(|e00 >< e00| +
∑

α∈{0,d−1} |ẽα0 >< ẽα0 | − U00)

= (1/d)(|e00 >< e00| +
∑

α∈{0,d−1} |ẽα0 >< ẽα0 | − Identity)

• Other Wigner operators are obtained in a similar fashion by displacing the
”parity” operator.
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Qubit Wigner operators.
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Qubit Wigner operators.

• In particular the qubit counterpart of the parity operator reads

Ŵ00 = (1/2)(|+ >X< +|X + |+ >Y< +|Y + |+ >Z< +|Z−Identity),
in agreement with a previously derived identity
w00 = 1

4
[1 + kx + ky + kz]
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QUTRITS (d=3),

MUBs in the qutrit space.

• The Heisenberg-Weyl group counts 9 operators and is constructed by com-
bining translations and boosts.

V j
i =

d−1=2∑
k=0

γ
((k⊕Gi)�Gj)
G |k ⊕G i〉〈k|, (19)

where the Galois operations are addition and multiplication modulo 3.

• It counts 4 commuting subgroups, each of them being related to a direction
in the 3 times 3 phase space.

• Those subgroups are diagonal in 4 MUBs.
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QUTRITS (d=3),

MUBs in the qutrit space.

• Let us represent each MUB by a 3 times 3 matrix via the following recipe
-the states of the computational basis |e00 >, |e01 > and |e02 > corresponds

to the column matrices

 1
0
0

,

 0
1
0

 and

 0
0
1

;

• we represent a MUB by a 3 times 3 matrix each column of which repre-
sents a MUB state; the subgroup of vertical displacements is diagonal in
the computational basis, represented by the identity matrix; the subgroup of
horizontal displacements is diagonal in the Fourier basis; this corresponds
to the two first matrices given below; 1 0 0

0 1 0
0 0 1

,

 1 1 1
1 γ γ2

1 γ2 γ

,

• the two other directions are associated to the two last matrices given below: 1 1 1
γ γ2 1
γ 1 γ2

,

 1 1 1
γ2 1 γ
γ2 γ 1

.
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Qutrit phase-space.

• The 4 MUBs correspond to directions in the 3 times 3 affine phase-space.

•
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QUTRITS (d=3),

Wigner operators in the qutrit space.

• As already shown,

Ŵ00 = ˆPar. = 1/d2
∑

m,n∈0,1...d−1Um,n

= (1/d)(|e00 >< e00| +
∑

α∈{0,d−1} |ẽα0 >< ẽα0 | − Identity)

• Other Wigner operators are obtained in a similar fashion by displacing Ŵ00.

• Moreover Ŵ00 is a real parity operator (as is true in all odd dimensions
actually):
-for instance, if we represent the states of the computational basis |e00 >,

|e01 > and |e02 > by the column matrices

 1
0
0

,

 0
1
0

 and

 0
0
1

, then

the Wigner operator Ŵ00 corresponds to the matrix

 1 0 0
0 0 1
0 1 0

.
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SIC POVMs.

• We shall terminate this lesson by presenting a new tomographic technique,
related to the Heisenberg-Weyl group defined through the modulo d oper-
ations, conjectured to be valid in arbitrary dimension, called SIC tomogra-
phy.

• It has the merit to “work” in all dimensions, for instance in dimensions
6, 10 and so on.

• In particular we shall consider Heisenberg-Weyl covariant SIC POVMs with
a focus on dimensions 2 (qubits) and 3 (qutrits).
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SIC POVMs.

PVM versus POVM tomography.

• Traditionally, when we measure an observable we carry out a PVM mea-
surement.

• Example: A measurement of an observable diagonal in the X , Y or Z ba-
sis is called a Projective-Valued-Measure (PVM) measurement because the
probability of firing of a detector is equal to the average value of a projector:
P (+/−)X,Y,Z = Tr.ρ.| + /−〉X,Y,Z〈+/− |X,Y,Z
• During PVM qubit tomography, the three parameters kx, ky and kz that

characterize the state ρ of the qubit are estimated by performing 3 projective
(PVM) measurements (one measures the transition probabilities in 3 bases
(X ,Y , and Z)).

• In the case of polarised photons, for instance, the Stokes-Jones parameters
are estimated by successively measuring the degree of polarisation in 3 po-
larisation bases (horizontal-vertical, diagonal45-diagonal135 and circular
left-right).
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SIC POVMs.

PVM versus POVM tomography.

• The PVM measurements are a sub-class of more general measurement pro-
cesses called POVM (Positive Operator Valued Measure) measurements.

• In order to realize a POVM measurement it is sufficient to couple the quan-
tum system to another quantum system (called an ancilla), to entangle them,
and to realize a PVM measurement onto the full system: original system
plus ancilla.

• If we only consider the effect of this process at the level of the original
system (that we obtain by tracing out the ancilla), what we get is called a
POVM measurement.
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SIC POVMs.

PVM versus POVM tomography.

• In order to realize POVM tomography of a qubit, we couple it to an ancilla
of same dimensionality and let them evolve together in such a way that they
become entangled with each other.

• For the initial state of the system |ψS〉 =
∑1

i=0 ψi|eSi 〉 and the initial state
of the ancilla |eA0 〉,
the most general coherent unitary evolution will map their state onto the
state US−A|ψS〉|eA0 〉 =

∑1
i=0 ψiU

S−A|eSi 〉|eA0 〉 =
∑d−1

i,k,j=0 ψiU
i
k,j|eSk 〉|eAj 〉.

• In the latter equality, the coefficients U i
k,j are unambiguously determined by

the specific unitary evolution U that is imposed to the system.
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SIC POVMs.

• If we now perform a joint-measurement in the product-basis |eSk 〉|eAj 〉, the d2

probabilities of firing of the detectors k and j are equal to |
∑1

i=0U
i
k,jψi|2,

where k, j = 0, d− 1.

• Obviously this probability is in turn equal to the modulus square of the inner
product of the initial state |ψS〉 with the (not necessarily normalised) state
|US

k,j〉 =
∑d−1

i=0 U
i
k,j|eSi 〉.

• This is the average value of a Positive Operator, not necessarily a projector,
from there the name POVM measure.

• One can showa that the optimal POVM tomography corresponds to the sit-
uation where the d2 states |US

k,j〉 are treated on the same footing and maxi-
mally independent.

• In the practice, this imposes that the scal product between the d2 states
defining the POVM is equal to

√
1/(d + 1).

• Such a POVM is called SIC (Symmetric Informationally Complete) POVM.
aA. E. Allahverdyan, R. Balian, and Th. M. Nieuwenhuizen, Phys.Rev.Lett., 92, 120402 (2004), J.

Rehacek, B-G Englert, D. Kaszlikowski, Phys.Rev.A, 70, 052321 (2004)
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SIC POVMs.

• In a Hilbert space of dimension d any SIC POVM is thus in one to one
correspondence with an equiangular set of d2 pure states (with in general
COMPLEX amplitudes) that we shall call C-d2-hedron.

• In the context of quantum information, the problem of constructing SIC
POVMs was firstly tackled by Zaunera and popularized in 2003 through a
paper by Renes et. al.b. The main emphasis of both Zauner and Renes et.
al. lay on so-called group covariant POVMs.

• Covariant SIC POVM’s are generated by the action of the Heisenberg-Weyl
or generalised Pauli group.

• The action of this group on a seed state (fiducial state) generates d2 equidis-
tant states).

• They seem to exist in all dimensions, although there are only numerical re-
sults that support this conjecture. This is because in general the analytical
expression of those states is unknown but there exist very accurate numeri-
cal estimations of their amplitudes.

aG. Zauner Quantumdesigns: Grundzuge einer nichtkommutativen Designtheorie Ph.D. thesis (Univ
Wien) (1999).

bJ. M. Renes, R. Blume-Kohout, A. J. Scott, and C. M. Caves, J. Math. Phys. 45, 2171 (2004),
Symmetric Informationally Complete Quantum Measurements.
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SICs and Clifford transformations.

• An important property of SICs is that if we know one fiducial state of a par-
ticular covariant SIC we can generate many other covariant SICs by trans-
forming this fiducial state under the elements of the Clifford group.

• The Clifford group is the subset of the unitary operators that map Weyl
operators to multiples of Weyl operators under conjugationa

Cw(q, p)C† = c(q, p)w(S(q, p)) (20)

for maps c : Z2
d → C and S : Z2

d → Z
2
d.

• Among other properties the map S is invertible and S(0, 0) = (0, 0); the
operation associated to its invert S−1 is C†.

aIn prime dimensions the Clifford transformations are nothing else than the unitaries mapping one
MUB onto another MUB. The Hadamard transformation is a qubit Clifford operator for instance. In prime
power dimensions one can define a generalized Clifford group along these lines. The matrix S preserves
then the symplectic product.
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SICs and Clifford transformations.

• From the definition, it is straightforward to check that the image of the fidu-
cial state of a SIC under a Clifford transformation is still a SIC fiducial
state.

• Proof

• The proof goes as follows; let us assume that the state |U0,0〉 is a
fiducial state so that | tr |U0,0〉〈U0,0|w(m,n)| = |〈U0,0|w(m,n)|U0,0〉|
=
√

1/(d + 1) whenever m 6= 0 or n 6= 0;

• then its image |U ′0,0〉 under a Clifford transformation C† satisfies

| tr |U ′0,0〉〈U ′0,0|w(m,n)| = |〈U0,0|Cw(m,n)C†|U0,0〉|
=| tr〈U0,0|w(S(m,n))|U0,0〉|
=| tr〈U0,0|w(m′, n′)|U0,0〉|
=
√

1/(d + 1)

where we made use of the fact that the map S is invertible and S(0, 0) =
(0, 0) so that if m 6= 0 or n 6= 0 then m′ 6= 0 or n′ 6= 0.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

SICs and Clifford transformations.

• Consequently, if we know a fiducial state of a particular H-W covariant SIC,
then we can generate a set of other fiducial states and SICs by letting act on
it the Clifford transformations. As these operations form a group, such sets
are classes of equivalence of fiducial states (orbits under the Clifford group).
Two remarkable properties characterize these orbits:
-The number of orbits is very low (one or two).
Example: in dimension 6 there are 3456 fiducial states: 1728 of them belong
to the same orbit, and the 1728 other fiducial states are their images by
complex conjugation.
-The second property is the so-called

Zauner’s conjecture.
-It seems that there always (in arbitrary dimension d) exists a fiducial state
that is eigenvector under a certain Clifford operationa.

aActually this operation generates a subgroup of the Clifford group of order 3; as a consequence the
number of fiducial states is equal to the number of Clifford transformations divided by 3 times an integer.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

SICs and Clifford transformations.

• The validity of Zauner’s conjecture has been checked for all dimensions
up to 141, as well as 143,147,168,172,195,199,228,259,323 and 844a by a
bunch of authors (Scott, Grassl, Appleby, Fuchs and so on)a, most often
with a 15 digit accuracy but exact solutions are also known for instance for
dimensions 2-24,28,30,31,35,37,39,43,48,124.

• Recently, I. Bengtsson foundb, using similar numerical techniques, the ex-
istence of a fiducial state for a H-W covariant SIC POVM in dimension
d = 5779...

• Due to applications in code theory, dimension 2048 deserves to be patented
according to certain “rumors”a.

aFuchs, C.A.; Hoang, M.C.; Stacey, B.C. The SIC Question: History and State of Play. Axioms 2017,
6, 21.

bPrivate communication.
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QUBIT SIC POVMs.

• qubit POVM is sufficient for tomography whenever the 4 collected proba-
bilities are independent (up to normalization); then we get 3 independent
parameters equivalent to Bloch (spin 1/2) or Stokes (polarisation of light)
parameters up to reparametrization. Such a POVM is called IC (Informa-
tionally Complete) POVM.

• Optimal POVM tomography corresponds to the situation where the 4 states
|US

k,j〉 are treated on the same footing and maximally independent.

• In the qubit case this occurs when they form a perfect tetrahedron on the
Bloch sphere.

• Qubit SIC (Symmetric Informationally Complete) POVMs are thus associ-
ated to a tetrahedron on the Bloch sphere.
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Example 1: SIC POVM of.

spin 1/2 particles in NMR systems.

• We wish to estimate the Bloch parameters kx, ky, and kz necessary in order
to describe the unknown state of the qubit a.

• An ancilla is added to this device as qubit b to form a extending system.
This device is initially prepared in the state: ρin = ρa ⊗ |0〉 〈0|b. This state
differs according to different input qubits a.
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• We let now evolve the entire system under U , a (well-chosen) unitary evo-
lution:

U =
1

2


eiπ/4α α β −eiπ/4β
α −e−iπ/4α −e−iπ/4b −β
β −eiπ/4β eiπ/4α α

−e−iπ/4β −β α −e−iπ/4α


where α =

√
1 + 1/

√
3, β =

√
1− 1/

√
3.

• By measuring the full system in a basis that consists of the product
of the a and b qubit computational bases, we obtain four probabilities
P00, P01, P10, P11 .

• Such a POVM measurement is informationally complete due to the fact that
the coefficientsP00, P01, P10, P11 are in one-to-one correspondence with the
Bloch parameters kx, ky, and kz as shows the identity

P00 = 1
4

[
1 + 1√

3
(kx + ky + kz)

]
P01 = 1

4

[
1 + 1√

3
(−kx − ky + kz)

]
P10 = 1

4

[
1 + 1√

3
(kx − ky − kz)

]
P11 = 1

4

[
1 + 1√

3
(−kx + ky − kz)

]
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Remark 1.

• Actually, P00 is the average value of the operator (1
2
)(σ0,0 + ( 1√

3
)(σ1,0 +

σ0,1 + σ1,1)) which is the projector onto the pure state |φ〉〈φ| with |φ〉 =

α|0〉 + β∗|1〉 and α =
√

1 + 1√
3
, β∗ = e

iπ
4

√
1− 1√

3
.

• Under the action of the Pauli group it transforms into a projector onto one of
the four pure states σi,j|φ〉; i, j : 0, 1: σi,j|φ〉〈φ|σi,j = (1

2
)((1− 1√

3
)σ0,0 +

( 1√
3
)(
∑1

k,l=0(−)i.l−j.kσk,l))

• The signs (−)i.l−j.k reflect the (anti)commutation properties of the Pauli
group. So, the four parameters Pij are the average values of projectors onto
four pure states that are “Pauli displaced” of each other. The in-product
between them is equal, in modulus, to 1/

√
3 = 1/

√
d + 1, with d = 2.

• This shows that this POVM is symmetric in the sense that it is in one-to-one
correspondence with a tetrahedron on the Bloch sphere; this tetrahedron is
obviously invariant under the action of the Pauli group, so it is an example
of H-W cocariant SIC POVM...
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Tetrahedron and its complex conjugate (anti-tetrahedron).
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Remark 2.

• SIC POVM tomography of a proton trapped in a chloroform molecule has
been realized in China, at the Quantum Information lab. of Hefei Univer-
sitya.

• The ancilla was another proton, neighbour to the first one.

• Their unitary evolution was a judicious combination of external Radio-
Frequency Pulses (local qubit rotations) and of non-local (entangling) Ising
spin-spin (neighbour-neighbour) interaction.

aJF Du, M. Sun, X. Peng and T. Durt, Entanglement Assisted NMR Tomography of a Qubit, Phys.
Rev. A, 74, 042341 (2006).
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NMR SIC POVM tomography of a psin 1/2 state.

NMR pulses sequence.

Fidelity for 120 different initial qubit states.
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Example 2: Polarimetry by

SIC POVM tomography.

• Traditionally, in order to estimate the polarisation (Stokes-Jones) param-
eters, three PVM measurements are necessary, in 3 different polarisation
bases.

• To perform SIC POVM polarimetry, one measurement with 4 detectors is
enough.

• This has been realized at Singapore University (NUS).

• To do so, the polarisation was coupled (entangled) to spatial localisation by
letting pass the pulses through a partially polarising beamsplitter (PPBS)
(see picture next pagea ).

a from the reference A. Ling, S-K Pang, A. Lammas-Linares, and C. Kurtsiefer, Phys.Rev.A 74,
022309 (2006)).
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SIC POVM tomography

of photonic polarisation states.
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Polarimetry set-up

• By adjusting the asymmetry of the PPBS and the angle of the wave plates
(half wave and quarter wave plates) in an ad hoc manner, the four b de-
tectors will fire with the same P probabilities as for the spin 1/2 case:
kyb1 = 1
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[
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3
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]
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[
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[
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]
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3
(−kx + ky − kz)

]
.
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2 qubit SIC Full Tomographic

Protocol for QKD.

• In the so-called Singapore protocol for QKDa, a pair of photons is prepared
in a maximally entangled polarisation state (Bell state) in a non-linear crys-
tal.

• Those photons are emitted along opposite directions to the authorized users
of the cryptographic line, Alice and Bob, who measure their polarisation by
a SIC POVM measurement.

• Bell states exhibit isotropic anti-correlations when they are measured by
local SIC POVM devices.

• These anti-correlations are exploited by Alice and Bob in order to estab-
lish a fresh cryptographic key, which is the goal of quantum cryptographic
protocols.

a T.Durt, C. Kurtsiefer, A. Lamas-Linares, A. Ling: Phys. Rev. A 78, 1 (2008), Wigner Tomography
of two-qubit states and quantum cryptography.
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2 qubit SIC Full Tomographic

Protocol for QKD.
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2 qubit SIC Full Tomographic

Wigner Tomography

of a Bell state.
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Experimental versus theoretical Wigner distribution of a Singlet State.
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Qutrit SIC POVMs.

• For qutrits an interesting fiducial state can be found for which SIC POVM
tomography is equivalent to Wigner tomographya.

• It is the unique eigenstate of the Parity operator (proportional to Ŵ00) for
the eigenvalue−1.

• Let us denote this state |Ψ− >:

(1/2)(1̂− ˆPar.) = |Ψ− >< Ψ−|
• The Wigner operators and the projectors onto elements of the elements of

the HW covariant equiangular set are related by a linear relation of the type

Ŵij = a1̂ + bÛij|Ψ− >< Ψ−|Ûij
†

with a and b real parameters.

• A similar relation also holds in the qubit case where each state of the tetra-
hedron is eigenstate of a Wigner operator.

• A simple dimensional argument explainsa why it is only in dimensions 2
and 3 that such a relation is valid.

aS. Colin, J. Corbett, T. Durt and D. Gross: “About SIC POVMs and discrete Wigner distribution”, J.
Opt. B: Quantum Semiclass. Opt. 7 S778-S785 (2005))
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Conclusion.

• This is where we end this visit in the zoo of applications of the H-W group
to tomography.

• We mentioned their interest for cryptography, but they are also relevant in
quantum computing, code theory, and signal-processing tasks like radar and
speech recognitiona.

• They provide a picture of phase-space that goes far beyond its classical
descriptionb.

aFuchs, C.A.; Hoang, M.C.; Stacey, B.C.: Axioms (2017), 6, 21, The SIC Question: History and State
of Play. .

bT. Durt, B-G Englert, I. Bengtsson, and K. Zyczkowski: IJQI, vol. 8, nr 4, 535-640 (2010), On
mutually unbiased bases.


