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Peyresq 2021.

PART 1.

Wave-particle complementarity,

welcher-weg information, Q eraser,

entanglement, decoherence and all that.

Thomas Durt.
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Einstein-Bohr debate about complementarity.

• In 1927 at the Solvay conference Einstein discusses the double-slit experi-
ment with Bohr.

• He proposes to equip the screen in which slits are located in order to mea-
sure the recoil occuring when the particle passes through one slit.

• This would make it possible to measure through which slit the particle
passes (location) without destroying interferences.
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Einstein-Bohr debate about complementarity.

• This would contradict Bohr’s ideas according to which either we know
where the particle is located (particle behaviour) or we measure interfer-
ences (wave behaviour) but then we ignore through which slit the particle
passes.

• This is an aspect of Bohr’s complementarity, illustrated by Heisenberg un-
certainties (where δx is related to particle behaviour and δpx to wave be-
haviour).



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Einstein-Bohr debate about complementarity.

• Bohr realizes that if we impose to the screen to be a quantum object satis-
fying Heisenberg uncertainties, the uncertainty on the location of the slits is
necessarily larger than the distance between fringes on the final screen (see
figure netx page).

• Let us give here a sketchy and handwaving proof (for details see e.g. Ex-
amination of wave-particle duality via two-slit interference by Mario Rabi-
nowitz https://arxiv.org/abs/physics/0302062), the distance between fringes
is of the order of λ · (D/2d) where D is the distance between the screen
with the slits and the final screen; now the recoil of the screen with the
fringes is of the order of (~/λ) · (d/D) where ~/λ ≈ px is the momentum
of the incoming particle.
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Einstein-Bohr debate about complementarity.

• If we want that the screen reveals through which slit the particle passes we
must impose that δPZ the uncertainty on the momentum of the screen is
smaller than the recoil:
δPZ < (~/λ) · (d/D).
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Einstein-Bohr debate about complementarity.

• Making use of Heisenberg uncertainty applied to the screen vertical position
Z we get δZ ≥ ~/2δPZ so that, finally,
δZ >λ · (D/2d)

• Now, the distance between fringes is precisely λ · (D/2d).

• This means that if we are able to measure through which slit the particle
passes, interferences at the level of the final fringe are averaged out over a
distance larger than the interfringe and disappear.
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Einstein-Bohr debate about complementarity.
Apparently, the last word belongs to Bohr in this debate but this is not the end
of the story as we shall discuss now.

• The reasoning of Bohr and Einstein presupposes that particles are localized
at each time and follow continuous in time trajectories; the “mechanical”
interaction with the screen is also not fully convincing.

• As Wheeler will show, in a delayed choice experiment, the wave or corpus-
cular nature of the quantum object is not fixed from the beginning, it can be
imposed A POSTERIORI, which is a problem regarding causality.
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Wheeler delayed choice experiment.

• Let us transpose Einstein-Bohr gedanken experiment to a “galactic” Mach-
Zehnder device where light reaches the detectors after a travel of say 4 years.

• If (A) we put a beamsplitter at the end, interference fringes will appear and
the behaviour is a wave behaviour.

• If (B) we do not put the beamsplitter, we know through which arm light
passed and the behaviour is a corpuscle behaviour.
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Wheeler delayed choice experiment.

• If we delay the choice between both possibilities A and B till the very end,
we impose a posteriori that light behave as a wave or a particle, already
when it enters the interferometer, 4 years before the choice.

• If the wave or particle nature of light is a “real” property of light, this prop-
erty can be influenced from the future which sounds weirda.

• This constitutes Wheeler’s delayed choice paradox...
aIn the literature, this is sometimes called Wheeler necromancy....



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Wheeler delayed choice, an important experiment.
An important “recent” experiment (see next slide):

• Vincent Jacques et al.: realized the delayed choice experiment with SIN-
GLE PHOTON PULSES for the 1st time...
Vincent Jacques, E. Wu, Frederic Grosshans, Francois Treussart, Philippe
Grangier, Alain Aspect and Jean-Francois Roche, Experimental realiza-
tion of Wheeler’s delayed-choice GedankenExperiment. Science, Ameri-
can Association for the Advancement of Science, 2007, 315 (5814), pp.966.
10.1126/science.1136303 . hal-00110392
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Wheeler experiment with a single photon source...
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Wheeler experiment with a single photon source...

• A laser pulse produced in 1 gets splitted in two components at 2.

• One of these components triggers a nv-center which produces a single pho-
ton with diagonal polarization in 3.

• This photon gets splitted at 4 into a horizontal polarization (lower arm) and
a vertical polarization (upper arm).

• The two components are recombined at 5.

• In the meanwhile a part of the laser pulse reaches at 6 a trigger which
activates an independent QRNG (quantum randomnumber generator); this
QRNG produces either a bit 1 or a bit 0 with probability 50 percent.

• If the bit 1 is produced nothing happens; if the bit 0 is produced, a trigger
activates a pockel’s cell which rotates by 45 degrees the polarisation at the
vertical output of a beamsplitter (5).

• This means that before reaching the polarisation beamsplitter in 9 the polar-
isation state of the light is
-either 1√

2
(|Hor. > +eiδφ|V ert. >)

-or 1
2
((1 + eiδφ)|Hor. > +(1− eiδφ)|V ert. >)
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Wheeler experiment with a single photon source...

• If before reaching the polarisation beamsplitter in 9 the polarisation state of
the light is
1√
2
(|Hor. > +eiδφ|V ert. >) the probability of firing of detector 1 is 50

percent, the same for detector 2, and we can infer through which arm the
photon passed (particle behaviour)

• If before reaching the polarisation beamsplitter in 9 the polarisation state of
the light is
1
2
((1 + eiδφ)|Hor. > +(1 − eiδφ)|V ert. >) the probability of firing of

detector 1 is cos2(δφ/2), and sin2(δφ/2) for detector 2, and we cannot
infer through which arm the photon passed (wave behaviour)

• Conclusion: the choice between wave and particle behaviour is realized in
real time by the QRNG, at the fully end of the interferometer (48 meters
long) in a time sufficiently short (smaller than 48 meters/c) so that Wheeler
non-causal “necromancy” is guaranteed (no “distance loophole” here).
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Modern perspective: the Q eraser.
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Modern perspective: the Q eraser.

• In a modern perspective, the wave-particle complementarity is put in rela-
tion with entanglement:
the position of a quantum particle (A) passing through an interferometer is
entangled with an extra-degree of freedom or ancilla (B).

• For instance (see figure next page), in a 2 arms M-Z interferometer, we
entangle the position of a photon with its own polarisation.

• The state of the particle is thus prepared in such a way that its value before
the output of the interferometer is equal to
1√
2
(|upA > |HB > +eiφ|downA > (sinθ|HB > +cosθ|V B >))
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Modern perspective: the Q eraser.
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Modern perspective: the Q eraser.

• In matricial notation, let us adopt the following conventions:

| upA >=

(
1
0

)
, | downA >=

(
0
1

)
,

and < upA| = (1, 0), < downA| = (0, 1).

• One can show (see tutorials) by direct computation that when θ=0 the re-
duced density matrixa of the position degree of freedom (A) is

ρreducedup,down =

(
1/2 0
0 1/2

)
this corresponds to a fully incoherent density matrix.

• Actually, when θ=0, entanglement is maximal and one can show easily that
it is possible by measuring the polarisation at the end to guess which way
the photon followed.

• This corresponds to a particle behaviour and interferences disappear then
because the reduced density matrix assigned to the spatial position (up ver-
sus down) is fully incoherent.

asee tutorials and next chapters of this lessons-the A-reduced density matrix describes the effective
state if we measure observables related to the position degree of freedom only-this is the case here: at the
end of the Mach-Zehnder set up, the eigenstates associated to clicks in the two (+ and -) output detectors
are 1√

2
(| upA > ±| downA >)|Hor.B > and 1√

2
(| upA > ±| downA >)|V ert.B >. Polarisation plays no

role here because the final beamsplitter does not distinguish them.
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Modern perspective: the Q eraser.

• When θ=π/2, there is no entanglement at all (the state is factorisable in
polarisation and space).

• Then no welcher-weg information is available.

• The A-reduced density matrix assigned to the spatial position then obeys

ρreducedup,down =

(
1/2 eiφ/2
e−iφ/2 1/2

)
• It describes a fully coherent state (pure state) and the visibility of the inter-

ferences is maximal (equal to 1). This corresponds to a wave behaviour.
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Modern perspective: the Q eraser.

• For intermediate values of θ there is a continuum of situations where partial
welcher-weg is available, ranging between the two extreme cases (particle
and wave behaviour respectively).

• The reduced density matrix in the |upA >, |downB > basis ranges from
a pure, fully coherent state, to a fully incoherent state when θ varies from
π/2 to 0.
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Modern perspective: the Q eraser.

• Actually one gets ρreducedup,down =

(
1/2 (eiφsinθ)/2

(e−iφsinθ)/2 1/2

)
• A possible measurea of the purity/coherence of ρreducedup,down is given by

2Tr.((ρreducedup,down)
2)− 1;

it is equal to sin2θ

• when θ varies from π/2 to 0, the visibility varies from 1 (wave behaviour,
pure state, maximal visibility) to 0 (particle behaviour no interference, visi-
bility=0).

• Let us define the visibility of the interferences as follows:
Visibility=(Max probability in one detector-Min probability) normalised by
(Max probability in one detector+Min probability).

• One can show that, in the present experiment, the visibility at the output of
the interferometer is also equal to the purity.

asee next chapters and tutorials
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Modern perspective: the Q eraser, some remarks and interpretations.
Remark 1.

• One is free to erase the welcher-weg information at the end of the interfer-
ometer by rotating the polarisation accordingly (see previous picture).

• This explains why this device is called the quantum eraser...



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Modern perspective: the Q eraser, some remarks and interpretations.
Remark 2:

• There exists a complementarity relation between visibility of interferences
and welcher-weg information;
-it can be established independently of the state in which we prepare the
system;
- in the case of a pure state it can be put as we shall show soon in the form
visibility + entanglement=1;
-it can be generalized to arbitrary states (pure or mixed).

• This constitutes a modern version of Bohr’s complementarity.

• It also constitutes as we shall see a fundamental aspect of quantum deco-
herence: when a system A is entangled with a system B, the purity of the
reduced density matrix of A (B) decreases when the entanglement between
A and B increases and vice versa.
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Modern perspective: the Q eraser, some remarks and interpretations.
Remark 3:

• the “mechanical” interaction between measuring device and quantum sys-
tem present in Einstein-Bohr’s gedanken experiment is here replaced by
entanglement between the system and its environment (or ancilla).

• The wave or particle nature of the quantum system can be controlled at
will by varying the entanglement of the system with the rest of the world
(ancilla).
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Quantum Eraser, an important experiment.

• One step beyond into the quantum:

• an important “recent” experiment:

• Kaiser, F., Coudreau, T., Milman, P., Ostrowsky, D. B. and Tanzilli, S.
Entanglement-enabled delayed-choice experiment. Science 338, 637-640
(2012).
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Entanglement-enabled delayed-choice experiment: Q eraser plus procras-
tination...
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Entanglement-enabled delayed-choice experiment: Q eraser plus procras-
tination...

• A source produces a pair of (maximally entangled in polarisation) photons.

• One of them is sent to the right part of the device where it passes through a
beamsplitter.

• Thereafter the two branches are recombined in a PDBS (polarisation de-
pendent beamsplitter) which is 100 percent reflective regarding incoming
horizontal polarisations and acts as a 50-50 beamplitter on incoming verti-
cal polarisations.

• This means that if the state is vertically polarised before entering the final
interferometer, wave particle is realized and the visibility of interferences at
the output is 1; on the contrary if the state is horizontally polarised before
entering the interferometer, only one detector will click, revealing that the
photon chose to follow the upper arm.

• If the polarisation state before entering the final interferometer takes an in-
termediate value between horizontal and vertical (for instance diagonal) the
behaviour is neither a purely wave behaviour nor a purely particle behaviour
but something in-between.
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Entanglement-enabled delayed-choice experiment: Q eraser plus procras-
tination...

• As can be seen from the picture below, one is free to choose later, a long time
after the right detectors clicked, to which basis the polarisation effectively
belongs in the right arm by choosing to measure the left photon either in the
hor-vert or in the diagonal polarisation basis.

• Postselecting the results in the right interferometer reveals the 3 behaviours
made explicit before: wave, particle or in-between...

• This illustrates the idea of quantum procrastination: if we can do the job
tomorrow, let us wait until tomorrow...
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Decoherence. mathematical preamble.

• In order to properly describe decoherence, some preliminary concepts are
necessary:
-tensor product and entanglement
-density matrix
-reduced density matrix
-measure of purity (coherence) of a density matrix
-no signaling
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Tensorial Product structure.
In modern books about the quantum theory it is often considered that the prod-
uct structure deserves a postulate on its own. This structure is indeed essential:
it describes how we couple quantum systems to each other, how we pass from
one to many systems, and it radically differs from the classical picture. Among
others entanglement is a by-product of the tensor product, which has no classi-
cal counterpart.
The Tensor Product is defined as follows:
-Let us consider a system A and a sytem B, respectively associated to the Hilbert
spacesHA andHB.
-then the system composed of the subsystems A and B is associated to the
Hilbert spaceHA ⊗HB, that is, the tensorial product ofHA andHB.
HA ⊗HB isa defined as follows.
-it admits a basis that consists of ALL products of basis states of the A system
and of the B system (ofHA andHB).
-their inner product is defined as follows:
∀|ψA >, |φA >∈ HA,∀|ψB >, |φB >∈ HB :
< ψA|⊗ < ψB||φA > ⊗|φB >=< ψA|φA > · < ψB|φB >.

aMathematicians often use the symbol⊗ but physicists rarely do so. For instance, the state |+〉AZ⊗|+〉BZ
can be represented either by the symbol |+〉AZ |+〉BZ or even |+〉Z |+〉Z or yet |+ +〉, in situations where no
ambiguity can occur.
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Entanglement.
Linear combinations of factorisable states are not always factorisable; such
states are called entangled states.
For instance Bell states are entangled

• Bell states are in 1-1 correspondence with Pauli spin operators:
σ0 = |+〉Z〈+|Z + |−〉Z〈−|Z ↔ |B0

0〉 = 1√
2
(|+〉AZ⊗|+〉BZ + |−〉AZ⊗|−〉BZ )

σx = |+〉Z〈−|Z + |−〉Z〈+|Z ↔ |B0
1〉 = 1√

2
(|+〉AZ⊗|−〉BZ + |−〉AZ⊗|+〉BZ )

σy = i|+〉Z〈−|Z−i|−〉Z〈+|Z ↔ |B1
0〉 = 1√

2
(|+〉AZ⊗|−〉BZ−|−〉AZ⊗|+〉BZ )

σz = |+〉Z〈+|Z−|−〉Z〈−|Z ↔ |B1
0〉 = 1√

2
(|+〉AZ⊗|+〉BZ−|−〉AZ⊗|−〉BZ )

• Bell states are not factorizable; for instance if |B0
0〉 would factorize then:

αA.αB=βA.βB=
√

1
2

and αA.βB= βA.αB=0;

Obviously such a system of equations has no solution (otherwise)

αA.αB.βA.βB=
√

1
2
.
√

1
2
=1

2
,

and αA.βB.βA.αB=0.0 = 0 so that we run into a contradiction:
1/2 = 0 (!?).
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Entanglement and correlations.

• The product of two local observables OA and OB is defined as follows,
through its action on factorizable states:
OA ⊗OB|φA > ⊗|φB >= (OA|φA >)⊗ (OB|φB >).

• It is easy to show that when the systems A and B are prepared in a factoris-
able state, the average of the product of local observables is the product of
the local averages: < OAOB >=< OA >< OB > (this is the so-called
condition of statistical independence).

• Entangled states on the contrary ALWAYS exhibit correlations in well-
chosen bases.

• The Bell state |B0
0〉 = 1√

2
(|+〉AZ ⊗ |+〉BZ + |−〉AZ ⊗ |−〉BZ ) for instance is

such that both particles behave as perfect twin particles: they exhibit the
same spin value when measured along an arbitrary direction (the same in
the A and B regions) in the XZ plane on the Bloch sphere.

• The singlet state |B1
0〉 = 1√

2
(|+〉AZ⊗|−〉BZ −|−〉AZ⊗|+〉BZ ) is characterized

by perfect anticorrelations: the outcomes for spin values measured along an
arbitrary direction are always opposite to each other...
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Density Matrix.
The density matrix was introduced by John von Neumann in order to solve the
following problem :
... Does there exist a convenient way to describe the state of a quantum system
whenever its preparation consists of a statistical distribution of elements of the
Hilbert space ? (the system is prepared in the state |ψi > with probability λi:
λi ∈ R+, andΣiλi = 1)...
The average value of an observable O is then equal to the weighted sum of the
average values corresponding to |ψi > (weighted with the weights λi):
< O >= Σiλi < O >i= Σiλi < ψi|O|ψi >.
It appears that< ψi|O|ψi > is equal to the Tracea of a product of two operators:
< ψi|O|ψi >= Tr.O|ψi >< ψi|, where |ψi >< ψi| is the projector onto the
state|ψi >.
The proof is left as an exercise (see tutorials).

aLet us consider an arbitrary orthonormal basis |φj >, j = 1...D of H, and A a linear operator, then,
by definition Tr.A = ΣD

j=1 < φj|A|φj >. Actually, if Ajk is the matrix that represents A in the basis
|φj >, j = 1...D (Ajk =< φj|A|φk > and A = ΣD

j,k=1Aj,k|φj >< φk|), then the trace is nothing else than
the sum of the diagonal elements of this matrix.
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Decoherence, mathematical preamble, density matrix.
Finally we find,
< O >= Σiλi < O >i= Σiλi < ψi|O|ψi >
= ΣiλiTr.(O|ψi >< ψi|)= Tr.(Σiλi|ψi >< ψi|O)
=Tr.(Oρ), where ρ is the density matrix of the system:
ρ = Σiλi|ψi >< ψi|.
In conclusion, once we have computed ρ =

∑
i λi|ψi >< ψi| then we can

compute all average values by computing a Trace:
Tr.(O.ρ) =

∑
< ψi|O|ψi >=< O >.
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Decoherence, mathematical preamble, Pure and Mixed states.
In the case that the state of the sytem is known without any ambiguitya:
λi = δi,l and |ψ >= |ψl >, then the density matrix is a one dimensional
projector onto the state |ψl >:
ρ = |ψl >< ψl|.
In the generic case (mixed state), a density matrix is NOT always a projector
but the following properties are ALWAYS valid:
Exercise:
if ρ =

∑
i λi|ψi >< ψi| where the λi’s are probabilities then

• ρ is a linear operator

• Trace(ρ)=1

• ρ is positive and self-adjoint

• ρ can thus be diagonalised in a certain basis (|ẽi >) where it possesses a
canonical expression of the form ρ =

∑
i λ̃i|ẽi >< ẽi|where the λ̃’s are

probabilities:
∑

i λ̃i = 1 and λ̃i ∈ R+,∀i
aThen it is said to be pure otherwise it is said to be mixed.
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Decoherence, mathematical preamble, example of density matrix: ther-
malized state at temperature T .
Remark:
in statistical quantum mechanics, the state of the sytem when it is thermalized
at temperature T is described by a density matrix:
ρ = ΣEipi|Ei >< Ei|,
where pi =

exp(−Ei
kT )

Σiexp(−
Ei
kT )

and Ei represents eigenvalues of the Hamiltonian of the
system.
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Decoherence, mathematical preamble, reduced density matrix.
Let us assume that Alice and Bob’s systems are prepared in the pure (but non
necessarily factorizable) state |Ψ〉AB =

∑d−1
i,j=0 αij|i〉A ⊗ |j〉B (where |i〉A and

|j〉B are states from orthonormalized reference bases) and that, say, Bob mea-
sures a local observable in the B region. Such an observable is represented by
a local self-adjoint operator of the form Id.A ⊗ OB so that its average value is
equal to

d−1∑
i,j,i′,j′=0

α∗ijαi′j′〈i|A ⊗ 〈j|BId.A ⊗OB|i′〉A ⊗ |j ′〉B

=
d−1∑

i,j,i′,j′=0

α∗ijαi′j′δi,i′〈j|BOB|j ′〉B

=
d−1∑
j,j′=0

d−1∑
i=0

α∗ijαij′〈j|BOB|j ′〉B.
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Reduced density matrix.
It is worth noting that the results of local Bob’s measurements are the same as
those that he would get if he would prepare his system in the state described by
the effective or reduced density matrix ρB =

∑d−1
j,j′=0

∑d−1
i=0 α

∗
ijαij′|j ′〉B〈j|B.

Proof:
Tr.(OB.ρB) = Tr.(

∑d−1
j,j′=0

∑d−1
i=0 α

∗
ijαij′|j ′〉B〈j|B.OB)

=
∑d−1

k=0〈k|B(
∑d−1

j,j′=0

∑d−1
i=0 α

∗
ijαij′|j ′〉B〈j|B.OB)|k〉B

=
∑d−1

k=0 δk, j
′B(
∑d−1

j,j′=0

∑d−1
i=0 α

∗
ijαij′〈j|B.OB)|k〉B

=
∑d−1

j,j′=0

∑d−1
i=0 α

∗
ijαij′〈j|BOB|j ′〉B in accordance with the average value com-

puted before (previous page).
One can check (exercise) that ρB is well a trace 1, positive and self-adjoint
operator as it must be.
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Remark.
Formally, the reduced density matrix of Bob can be obtained by tracing out
external degrees of freedom (in this case Alice’s degrees of freedom):

TrA(|Ψ〉AB〈Ψ|AB) = TrA(
d−1∑
i,j=0

αij|i〉A ⊗ |j〉B
d−1∑
i′,j′=0

α∗i′j′〈i′|A ⊗ 〈j ′|B)

=
d−1∑
k=0

〈k|A(
d−1∑
i,j=0

αij|i〉A ⊗ |j〉B
d−1∑
i′,j′=0

α∗i′j′〈i′|A ⊗ 〈j ′|B)|k〉A

=
d−1∑
k=0

(
d−1∑
i,j=0

αijδk,i|j〉B
d−1∑
i′,j′=0

α∗i′j′δk,i′〈j ′|B

=
d−1∑

i,j,j′=0

αij|j〉Bα∗ij′〈j ′|B = ρB.
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Two measures of coherence (qubit case).

• Let us denote P1 and P2 the eigenvalues of the density matrix of a qubit;
these are real positive numbers and their sum is equal to 1; they can be
considered as the probabilities assigned to the first and second eigenstates
of the density matrix.

• To quantify decoherence the most simple thing to do is to consider
measure(decoherence)=1-measure(coherence)=2(1− Tr.(ρ2))=4P1P2.

• This measure is equal to 1 when P1 = P2 = 1/2 and to 0 when P1 = 0
(P2 = 1) or P1 = 1 (P2 = 0).

• To quantify coherence, we should then consider measure(coherence)=1-
measure(decoherence)=2Tr.(ρ2)− 1
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Two measures of coherence (qubit case).
Alternative Measure of (de) coherence: Shannon-von Neumann entropy.

• An alternative measure of decoherence is provided by the Shannon-von
Neumann entropy−Tr.(ρ log2 ρ).
Exercise: check that this measure is comprised between 0 and 1 and equal
to 1 when P1 = P2 = 1/2 and to 0 when P1 = 0 (P2 = 1) or P1 = 1
(P2 = 0) (with P1 and P2 the eigenvalues of ρ).
Remark: in dimension d the Shannon-von Neumann measure of decoher-
ence is −Tr.(ρ logd ρ), it is again equal to 1 for fully incoherent mixtures
and to 0 for pure states.
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Mathematical preamble: No signaling theorem.

• As we have proven the local physics at, say, Bob’s level is encapsulated in
the reduced density matrix ρB =

∑d−1
j,j′=0

∑d−1
i=0 α

∗
ijαij′|j ′〉B〈j|B.

• The no signalling theorem expresses the fact that, when Alice and Bob are
far away from each other, so that there is no direct interaction between Alice
and Bob, Alice may not influence Bob’s state IN AVERAGE.

• Even in the case of instantaneous action at a distance induced by the col-
lapse process, Bob’s reduced density matrix remains invariant after averag-
ing over possible outcomes obtained by Alice when she measures a local
(A) observable.
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Mathematical preamble: No signaling theorem.

• In order to prove that Alice’s action has no influence on the local proper-
ties of “Bob’s” subsystem (we mean hereby the subsystem situated at Bob’s
side) we must establish the INVARIANCE OF BOB’S REDUCED MA-
TRIX in two situations:
A) Alice performs arbitrary measurements on “her” subsystem.
B) Alice changes the local conditions of evolution at the level of “her”
subsystem.
More specifically one can show (appendix) that
A) ρB remains, after Alice’s measurement, the same as it was before.
B) If H = HA⊗ 1B + 1A⊗HB, the evolution in time of ρB is the same as
if HA = 0, whatever the value of HA.
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Decoherence, example 1: Stern-Gerlach measure and spin decoherence.

• A silver atom is sent through a Stern-Gerlach device, and prepared in a pure
spin state |Ψ >S= α|+ >S +β|− >S where |± > represents spin up
(down) states along the Z direction.

• The initial spatial state, for instance a gaussian wave packet propagating
along the X direction is denoted |0 >E; here the label E refers to the
fact that we consider here the position degrees of freedom as an ancilla, an
“external”, “environmental” degree of freedoma

• The full state is thus initially a factorisable state
|Ψ >SE= (α|+ >S +β|− >S)⊗ |0 >E .

N

S

Beam of silver atoms

Source

aThis is the contrary of the quantum eraser where the photon spin played the role of the ancilla.
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Decoherence, example 1: Stern-Gerlach measure and spin decoherence.

• After passing inside the S-G device, the full state is now an entangled state
|Ψ >SE= (α|+ >S ⊗|up >E +β|− >S ⊗|down >E),

where for instance |up >E (|down >E) represents a gaussian state moving
upwards (downwards).

• The reduced density matrix of the spin degree of freedom undergoes thus
the following transformation:

• Before the measurement: ρreduced+,− =

(
|α|2 α∗β
αβ∗ |β|2

)
which represents a

pure state.

• After the measurement, averaging over possible measurement outcomes:

ρreduced+,− =

(
|α|2 0

0 |β|2
)

which represents a mixed state.
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Decoherence, example 2: localisation of a quantum bilocalised object after
the scattering of one photon.

• Let us consider an object localised in two positions, up and down:
|Ψ >S= α|up >S +β|down >S

• A photon is sent (see picture next page) in order to check whether the object
is present in the up locationa.
|Ψ >SE= (α|up >S +β|down >S)⊗ |0 >E .

• After passing in the up region, the state of the full system obeys
|Ψ >SE=
α|up >S ⊗|reflected >E +β|down >S ⊗|notreflected >E .

aThis is the contrary of the quantum eraser where the photon played the role of the bilocalised system.
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Decoherence, example 2: localisation of a quantum bilocalised object after
the scattering of one photon.

• Before the measurement: ρreducedup,down =

(
|α|2 α∗β
αβ∗ |β|2

)
which represents a

pure state.

• After the measurement, averaging over possible measurement outcomes:

ρreducedup,down =

(
|α|2 0

0 |β|2
)

which represents a mixed state.
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Decoherence, examples 1 and 2.

• As we see, the measurement process killed the off-diagonal elements (reso-
nances) of the density matrix (expressed in the eigenbasis of the observable
under measurement).

• Even in absence of a measurement apparatus, the entanglement with an an-
cilla kills the off-diagonal elements of the reduced density matrix, when it
is expressed in diagonal form.

• This is the so-called decoherence process.
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Four remarks about Decoherence.

• 1. The decoherence is present everywhere in nature: whenever a system
interacts with its environment, they are likely to get entangled with each
othera and the state of the system loses its purity (coherence).

• At the macro scale it is a very fast process because the coherence time is
inversely proportional to the number of atoms in the system: deflection of
one environmental photon by one atom suffices to localize a system as we
have seen in example 2.

aOne can show (T. Durt, Quantum Entanglement, Interaction, and the Classical Limit, Zeit. fur Nat. A
59, 425 (2004)) that if two systems interact without entangling arbitrary chosen initially factorisable states
their interaction potential must be equal to 0. In other words, there is no interaction without entanglement.
See also https://www.youtube.com/watch?v=CyFJgDgcEwc
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Four remarks about Decoherence.

• 2. Decoherence succesfully explains for instance why we do not observe
delocalised macroscopic states in everyday life, and why IBM, google and
others did not reach supremacy yet with their quantum computer....

• Zeh, Zurek and others developed a formalism aimed at describing the evo-
lution of a system in interaction with a noisy environment (this constitutes
the theory of open systems).

• In particular the evolution of such systems is described via an irreversible
in timea MASTER equation (often called the Lindblad equation).

aIrreversibility in time occurs here in the same way as in Boltzmann’s approach: initially system
and environment are not correlated (here entangled) which corresponds to low entropy; the entropy will
spontaneously increase in time because the regions of large entropy are quite larger than the regions of low
entropy (here we speak about the quantum entropy, measured for instance via the Shannon-von Neumann
entropy).
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Four remarks about Decoherence.

• 3. Some authors argue that decoherence makes it possible to get rid of the
problematic collapse postulate and thus to solve the so-called measurement
problem but this is not true.

• Decoherence does not kill the superpositions, it only kills their coherence.
Decoherence only does not explain the so-called objectification process dur-
ing which quantum potentialities get actualied.

• It does not explain what happens during individual measurement pro-
cesses...

• If for instance we measure whether the photon passing through the up re-
gion in example 2 has been reflected or not in an individual process, this
measurement will collapse the reduced state of the bilocalised system into
the state |up >S (resp. |down >S) with probability |α|2 (resp. |β|2).
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Four remarks about Decoherence.

• 3bis. Decoherence actually mimicks a measurement process during which
we ignore what is the result of individual outcomes and are only interested
in the average influence of the measurement.

• As a consequence of the no-signalling theorem, the reduced state of the
system is the same in average, that we ignore or not the outcomes of the
measurements performed on the ancilla, but this approach does not describe
individual measurement processes; it only deals with the average effect of a
large amount of measurements....

This explains why for instance Omnès, an influential promotor of the
decoherence-based interpretation wrote in the preamble of one of his books the
postulate 0: Reality exists...
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Four remarks about Decoherence.

• 4. Typically, in a decoherence process, one can find a preferred basis |ẽi >S

which is determined by the type of environmental interaction that we con-
sider such that an initial state |Ψ(t = 0) >S ⊗|0 >E will evolve in time to
an asymptotic state, reached after a time of the order of the (de)coherence
time, of the form∑

i < ẽi|S|Ψ(t = 0) >S |ẽi >S ⊗|f̃i >E

• The preferred basis |ẽi > is also said to result from an EIN (environment
induced) superselection rule.

• From a technical point of viewa, the |ẽi >S (resp.|f̃i >E) states belong to
the orthonormal basis which diagonalises the reduced density matrix of the
system S (resp. E) after interaction with the environment.
For instance a Stern-Gerlach interaction wil select the spin basis as in ex-
ample 1, while deflection by a photon as in example 2 or entanglement with
polarisation as in the quantum eraser superselects the position basis.

aThis is actually related to Schmidt biorthogonal decomposition, not detailed here.
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Four remarks about Decoherence.

• 4bis. The decoherence process kills the coherences (off-diagonal elements
of the reduced density matrix) in the preferred basis; it also “copies” the
states of this basis in the environment.

• The states of the preferred basis are thus also called “quasi-classical pointer
states” and they have the remarkable property that they interact with the
environment without getting entangled with it.

• Superpositions of these pointer states however get entangled with the envi-
ronment which kills their coherence...
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Back to Bohr complementarity.

• In the case of pure states |Ψ >SE the Shannon-von Neumann entropy de-
livers at the same time a measure of decoherence of the reduced state and a
measure of entanglement of the system with the rest of the world (environ-
ment).

• Coherence (purity) of the reduced state and entanglement between S andE
are thus complementary in the Bohrian sense: the sum of their measures is
equal to 1.

• This can be generalised to mixed states ρSE, but then the expression of com-
plementarity is more complicate, we get then for instance that the sum of
the welcher weg information and the visibility of interferences is bounded
by a maximal value (see work of Englert, Scully, Bergou, Jaeger, Shimony
and so on, see e.g. Jakobs and Bergou, Quantitative complementarity rela-
tions in bipartite systems, Optics Communications Volume 283, Issue 5, 1
March 2010, Pages 827-830).
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Appendix. No signaling theorem: demonstration, part A.
If Alice performs a measurement in the |i〉A basis, she will project Bob’s
state onto a state proportional to the state

∑d−1
j=0 αij|j〉B with probability

Pi =
∑d−1

j=0 |αij|2. The projector on such a state, conveniently renor-
malized, is equal to 1

Pi

∑d−1
j,j′=0 αij|j〉Bα∗ij′〈j ′|B so that after averaging over

all possible outcomes of Alice (i : 0...d − 1), we get that 〈OB〉 =∑d−1
i=0

Pi
Pi

∑d−1
j,j′=0 αijα

∗
ij′〈j ′|BOB|j〉B, equivalent to the average value that we

derived in the absence of Alice’s measurement.
Therefore if Alice performs her measurement at time t, and Bob measures OB

at time t′ = t+ ε, then, 〈OB(t+ ε)〉 = Tr.(ρB(t+ ε)OB) before and after the
measurement performed by Alice,
with ρB(t − ε) =

∑d−1
j,j′=0

∑d−1
i=0 α

∗
ij(t − ε)αij′(t − ε)|j ′〉B〈j|B = ρB(t + ε),

where ε represents a small time lapse, however longer than the (in principle
arbitrarily short) duration of Alice’s measurement.
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Appendix. No signaling theorem: demonstration, part B.
Let us now explicitly compute the temporal evolution of
ρB(t) =

∑d−1
j,j′=0

∑d−1
i=0 α

∗
ij(t)αij′(t)|j ′〉B〈j|B,

in absence of Alice’s measurement; in this case we get:
i~ ∂

∂t
|Ψ〉ABt = i~ ∂

∂t

∑
i,j αij(t)|i〉A ⊗ |j〉B

=H|Ψ〉ABt = (HA ⊗ 1B + 1A ⊗HB)|Ψ〉ABt
Henceforth i~ ∂

∂t
αij(t) =

∑
klHij,klαkl(t)=

∑
kl(HA⊗1B+1A⊗HB)ij,klαkl(t);

Now, (HA ⊗ 1B)ij,kl = (HA)i,k · δj,l while (1A ⊗HB)ij,kl=(HB)j,l · δi,k.
Therefore, ∂

∂t
ρBj′,j=∑

i
∂
∂t

(α∗ij(t)αij′(t))=
∑

i(
∂
∂t
α∗ij(t))αij′(t) +

∑d−1
i=0 α

∗
ij(t)

∂
∂t

(αij′(t))
=
∑

i(
−1
i~
∑

kl((HA)∗i,k · δj,l + (HB)∗j,l · δi,k)α∗kl(t))αij′(t)
+α∗ij(t)

1
i~
∑

kl((HA)i,k · δj′,l + (HB)j′,l · δi,k)αkl(t))
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Appendix.
No signaling theorem: demonstration, part B.
The contribution of Alice’s Hamiltonian to the temporal evolution of ρBj,j′ eads∑

i(
−1
i~
∑

kl(HA)∗i,k · δj,lα∗k,l(t)αij′(t)) + 1
i~(
∑

kl(HA)i,k · δj′,lα∗ij(t)αkl(t)))
=
∑

i(
−1
i~
∑

k(HA)k,i · α∗k,j(t)αij′(t)) + 1
i~(
∑

k(HA)i,k · α∗ij(t)αkj′(t)))
Now, denoting the mute index i by k and vice versa, we get

∑
i,k(HA)k,i ·

α∗k,j(t)αij′(t) =
∑

k,i(HA)i,k · α∗i,j(t)αkj′(t)
so that Alice’s contributions systematically cancel out. This ends the proof.
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Appendix.
No signaling theorem: demonstration, part B: some remarks.
Remark 1:

• Of course when A and B are close to each other they may well influence
each other by interacting throughHAB; signaling is then possible. However
when they are far away from each other HAB goes to zero (for instance,
gravity and electro-magnetic interaction diminish with the distance).
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Appendix.
No signaling theorem: demonstration, part B: some remarks.
Remark 2:

• WhenHAB=0, the evolution of the reduced density matrix is only due to the
influence of HB; we get then ∂

∂t
ρBj′,j

=
∑

i(
−1
i~
∑

kl((HB)∗j,l·δi,k)α∗kl(t))αij′(t)+α∗ij(t) 1
i~
∑

kl((HB)j′,l·δi,k)αkl(t))
=
∑

i(
−1
i~
∑

l((HB)∗j,l)α
∗
il(t))αij′(t) + α∗ij(t)

1
i~
∑

l((HB)j′,l)αil(t))

=−1
i~
∑

l(
∑

i αij′(t)α
∗
il(t)) · (HB)l,j + 1

i~
∑

l(HB)j′,l · (
∑

i αil(t)α
∗
ij(t))

=−1
i~
∑

l ρ
B
j′,l · (HB)l,j + 1

i~
∑

l(HB)j′,l · ρBl,j = 1
i~[HB, ρ

B]j′,j

• EXERCICE: check that this is exactly the same local evolution as for the
density matrix of a fully isolated, disentangled, B system;
in other words, if ρB =

∑
k Pk|gk >< gk|, where the |gk > states are pure

states of HB which diagonalize ρB, then check by direct computation that
if i~ ∂

∂t
|gk >= HB|gk >, then

∂
∂t
ρB = 1

i~[HB, ρ
B] (this is the so-called Liouville-von Neumann equation).
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Peyresq 2021.

PART 2.

Watching decoherence in real time:

the experiment of Haroche and coworkers.
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Aim of the experiment.

• In “normal”conditions, decoherence is a very fast process.

• For instance, as discussed in Schlosshauer’s book “Decoherence And the
Quantum-To-Classical Transition”,
the time taken for decoherence to occur for a grain of dust of size 10−3

cm bilocated in two places separated by its own size (expressed in sec-
onds)
-is equal to 1, if the environment only consisted of cosmic background ra-
diation at 2,7 K;
-at rooom temperature it would be 10−13;
-it would be equal to 10−17 in the best laboratory vacuum,
-and 10−29 in air at normal pressure.

• It is therefore very difficult to observe decoherence “ in real time”.

• Moreover it is very difficult to prepare macroscopic superpositions (“cat
states”).
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Basic features of the experiment.
The aim of the experiment of Haroche’s team is to observe in real time the
achievement of the decoherence process.

• The system under interest here is a “kitten state” which is a superposition
of two coherent states prepared inside a lossy cavity.

• Decoherence is here induced by the losses, and the evolution in time is
described by a master equation of the Lindblad type.

• The scope of the experiment is to realize, at various times, Wigner tomogra-
phy of the state of the light in the cavity, by using Rydberg atoms as probes.

• In fine, this experiment delivers a “movie” of the evolution of the state of
the system, putting in evidence the gradual disappearance of the coherences
between the two components of the kitten state, in a time notably faster than
the decay time.
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Content of the present chapter.

• We shall derive Lindblad equation nearly “from the scratch” in an input
output formalism.

• We shall estimate the decay rate of coherences (off-diagonal terms of the
reduced density matrix).

• We shall sketch the basic tricks making possible
-1 to prepare kitten states.
-2 to realize Wigner tomography of the state of light trapped in the cavity.
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Derivation of the master equation for the state of light in a lossy cavity.

• Usually, to derive the master equation of a decoherent, open quantum sys-
tem, one considers the coupling with the environment and performs a series
of approximations, other approaches treat the irreversible in time interac-
tion with the environment as a Monte-Carlo process (this is sketched in
appendix).

• Here we present an in-out approach where we also keep track of the state of
the environment (out system).

• Losses are treated as photons escaping from the cavity to the outside world.
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Derivation of the master equation for the state of light in a lossy cavity.

• Our basic assumption is that the system coherently exchanges elementary
excitations with its environment, that is, if at time t = 0,

|ΨS−E (t = 0)〉 = |1S〉 ⊗ |0E〉

then at time t,

|ΨS−E (t)〉 = α (t) |1S〉 ⊗ |0E〉 + β (t) |0S〉 ⊗ |1E〉

where α (t) and β (t) are properly normalized complex amplitudes (that is,
they verify |α (t)|2 + |β (t)|2 = 1) which we assume to know (e.g. through
a Wigner-Weisskopf approach to the problema).

• In principle the exact time-dependence of α and β can be derived once
we know the interaction Hamiltonian HSE between the system (S) and its
environment (E).

aDebierre, V. La fonction d’onde du photon en principe et en pratique. Ph.D. thesis, Ecole Centrale
Marseille (2015).
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Derivation of the master equation for the state of light in a lossy cavity.

• Fock states evolve in time as follows:

|ΨS−E (t = 0)〉 = |nS〉 ⊗ |0E〉

→ |ΨS−E (t)〉 =
n∑

m=0

√
n!

m! (n−m)!
αm (t) βn−m (t) |mS〉 ⊗ | (n−m)E〉

where the square root comes from symmetrizationa over all Fock states hav-
ing m particles in the system and n−m in the environment.

aIn standard approaches, the normalisations result from properties of the photon creation-annihilation
operators, as shown in V. Debierre, G. Demesy, T. Durt, A. Nicolet, B. Vial, et F. Zolla:“Absorption in
quantum electrodynamics cavities in terms of a quantum jump operato”, Physical Review A 90, 033806
(2014). However a wave function approach delivers exactly the same result as shown in T. Durt and V.
Debierre, COHERENT STATES AND THE CLASSICAL-QUANTUM LIMIT CONSIDERED FROM
THE POINT OF VIEW OF ENTANGLEMENT, Int J Mod Phys B 27, 1345014 (2013).
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Derivation of the master equation for the state of light in a lossy cavity.

• In particular, if at time t = 0 the system is prepared in a coherent state and
the environment is in the vacuum state, then the evolution yields coherent
states for the environment too and the full state factorizes:

|ΨS−E〉 (t = 0) = e−
|λ|2

2

+∞∑
n=0

λn√
n!
|nS〉 ⊗ |0E〉

→
|ΨS−E〉 (t) =

e−
|λ|2

2 |α(t)|2
+∞∑
n=0

n∑
m=0

(λα (t))
m

√
m!

|mS〉 ⊗ e−
|λ|
2 |β(t)|2 (λβ (t))

n−m√
(n−m)!

| (n−m)E〉

where we used the identity |α (t)|2 + |β (t)|2 = 1.
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Derivation of the master equation for the state of light in a lossy cavity.

• The state at time t can thus be rewritten as a product of coherent states:

|ΨS−E (t)〉 = e−
|λ|2

2 |α(t)|2
+∞∑
k=0

(λα (t))k√
k!
|kS〉 ⊗ e−

|λ|2
2 |β(t)|2

+∞∑
l=0

(λβ (t))l√
l!
|lE〉.

• This establishes that coherent states of the system, in this regime, interact
with the environment without getting entangled with it. They can thus be
considered as “classical pointers” according to the criterion for classicality
derived by Zurek in the framework of the quantum Darwinist approacha.

aPointer basis of quantum apparatus: Into what mixture does the wave packet collapse? W. H. Zurek,
Phys. Rev. D 24, 1516, 1981
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Derivation of the master equation for the state of light in a lossy cavity.

• The basic ingredient of our derivation of the Linblad master equation in an
IN-OUT formalism is to note that each damped coherent state of the form

|ΨS〉 (t) = e−
|λ|2

2 |α(t)|2
+∞∑
m=0

(λα (t))
m

√
m!

|mS〉,

with α (t) = eiωt−Γ
2 t, and H = ~ωa†a, obeys the Lindblad equation (see

appendix A for a more traditional derivation of Lindblad’s equation) which
is

d

dt
ρS (t) =

1

i~
[H, ρS (t)] +

Γ

2

[
2aρS (t) a† − a†aρS (t)− ρS (t) a†a

]
This is proven in appendix B.

• In the same vein it can be shown that |ΨS〉 (t) 〈Ψ′S| (t) with λ, λ′ arbitrary
complex numbers also obeys the Lindblad equation.

• Now , since coherent states constitute a basis of the Hilbert spacea, any
density matrix must obey the Lindblad equation, by virtue of the linearity
of the master equation. This ends our derivation.

aCoherent states are a basis in the sense that there exists a closure relation for such states. Rigorously,
they form an overcomplete basis.
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Decoherence of the kitten state.

• If at time t = 0 the state of the system is a coherent and symmetrical
superposition of coherent states of opposite parity (“Schrödinger kitten”),
while the environment is prepared in the vacuum state:

|ΨS−E (t = 0)〉 =
e−
|λ|2

2√
2
(

1 + e−2|λ|2
)
(

+∞∑
n=0

λn√
n!
|nS〉 +

+∞∑
n=0

(−λ)
n

√
n!
|nS〉

)
⊗|0E〉

• then at time t the state of the full system will be given by

|ΨS−E (t)〉 =
e−
|λ|2

2√
2
(

1 + e−2|λ|2
)
[

+∞∑
k=0

(λα (t))
k

√
k!
|kS〉 ⊗

+∞∑
m=0

(λβ (t))
m

√
m!

|mE〉

+
+∞∑
k=0

(−λα (t))
k

√
k!

|kS〉 ⊗
+∞∑
m=0

(−λβ (t))
m

√
m!

|mE〉
]

To prove this, note that the evolution is linear and make use of previous
results regarding coherent states.



•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Decoherence of the kitten state.

• Let us estimate the reduced kitten state

ρS (t) = TrE|ΨS−E (t)〉〈ΨS−E (t) |.

• This reduced state, at time t, obeys

ρS (t) =
e−|λα(t)|2

2
(

1 + e−2|λ|2
)

)

+∞∑
n=0

(λα (t))
n

√
n!
|nS〉

+∞∑
k=0

(λ∗α∗ (t))
k

√
k!

〈kS|

+
e−|λα(t)|2

2
(

1 + e−2|λ|2
) +∞∑

n=0

(−λα (t))
n

√
n!

|nS〉
+∞∑
k=0

(−λ∗α∗ (t))
k

√
k!

〈kS|

+ e−2|λβ(t)|2 e−|λα(t)|2

2
(

1 + e−2|λ|2
) +∞∑

n=0

(λα (t))
n

√
n!
|nS〉

+∞∑
k=0

(−λ∗α∗ (t))
k

√
k!

〈kS|

+ e−2|λβ(t)|2 e−|λα(t)|2

2
(

1 + e−2|λ|2
) +∞∑

n=0

(−λα (t))
n

√
n!

|nS〉
+∞∑
k=0

(λ∗α∗ (t))
k

√
k!

〈kS|
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Decoherence of the kitten state.

• The two first contributions represent an incoherent sum of the two compo-
nents of the kittens.

• The two last terms represent the coherences (off-diagonal elements of the
density matrix).

• Let us consider times of the order of 1
|λ|2Γ

. The average number of photons
at time t = 0 is of the order of |λ|2 and we assume that it is large (5, 10,
100 or more).

• Then 1
|λ|2Γ

is small relatively to the decay time of one photon which is 1
Γ

• However the coherences decrease like e−2|λβ(t)|2e−|λα(t)|2 and, as α (t) =
eiωt−Γ

2 t, it is easy to show that, for times of the order of 1
|λ|2Γ

, the damping of

the coherences is of the order of e−2|λΓt|2.
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Decoherence of the kitten state.

• Conclusion of previous page:
this means that the decay of coherences is quite (5 times, 10 times, 100
times or more) faster than the decay of the number of photons, a feature of
decoherence: the decoherence time is inversely proportional to the number
of particles in the kitten, and to the distance between the two components
of the kitten-state as well. Both parameters are here proportional to |λ|2.

• To illustrate these concepts, we shall end this lesson by describing
Haroche’s experiment which made it possible to visualize decoherence in
real time in a QED cavity.
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Haroche experiment.

• Haroche Wigner tomography via entangled atoms passing through a QED
cavitya

•

ahttp://www.lkb.upmc.fr/cqed/wp-content/uploads/sites/14/2016/06/2009-LKB-AERES-
StateReconstruction−low.pdf
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Haroche experiment.
Preamble: Wigner distribution.

• Let us consider a quantum system of which the state-space is the Hilbert
space L2(R) (example: 1D harmonic oscillator).

• The Wigner operators Ŵ (x, p) behave as localisation operators in the
phase-space associated to the system.

• They form an orthonormal basis of the liner operators acting on L2(R).

• They are self-adjoint so that the amplitudes of the expansion of a density
matrix ρ̂ are real. These amplitudes are called the Wigner distribution of ρ̂ .

• It is sometimes called Wigner quasi-distribution because it can take real
negative values.

• There is a one-to-one correspondence between ρ̂ and its Wigner distribution.

• The Wigner distribution delivers a tomographic representation of a state ρ̂.
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Haroche experiment.
Preamble: Wigner distribution.

• The Wigner distribution can defined as
w(x, p) = (2/h)

∫
dye−2ipy/~ < x + y|ρ̂|x− y >.

• Making use of eixp̂/~|y >= |y− x > and < y|eixp̂/~ =< y + x|, it is easy
to show that
w(x, p) = (2/h)Tr.(eixp/~e2(ipx̂/~)e(2ixp̂/~) · ˆPar. · ρ̂)

= (2/h)Tr.(e2(ipx̂/~+ixp̂/~) · ˆPar. · ρ̂) = Tr.Ŵ (x, p) · ρ̂,

where ˆPar. represents the parity operator: ˆPar.|y >= | − y >.

• This means that the Wigner distribution is the trace of the product of ρ̂ with
the (twice) displaced parity operator.

• Let us consider a single mode, associated to light inside a cavity QED (ac-
tually, this is the minimal energy mode of the cavity).

• If we wish to perform tomography of the quantum state of light present in
this mode, a possible strategy consists of directly measuring the average
values of the Wigner operators; this has been done by the team of Serge
Haroche (Nobel prize 2012).
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Haroche experiment:

preparation of the initial kitten state at time t=0.

• A kitten state is the projection of a coherent state onto the parity plus one
eigenspace.

• To prepare a kitten state initially, prepare a coherent state inside the cavity
by injecting light with a laser, then let pass one atome inside the cavity,
the final mesurement will project the coherent state on a kitten state with
probability one halve.

• This is illustrated on the figure next page, where we see that if the state
of light before the passage of one atom (prepared in the ground state) is
denoted |Ψ >L, the state at the output of the device will be

(1/
√

2)(|Ψ+ >L |e >A +|Ψ− >L |g >A),
where |Ψ+ >±= (1/2)(1±Par.)|Ψ >L, while |g/e >A denote the atomic
excited/ground states.

• Note that (1/2)(1 + Par.) + (1/2)(1 − Par.) = 1, and ((1/2)(1 ±
Par.))2 = (1/2)(1± Par.) so that (1/2)(1± Par.) can be considered as
the projector onto eigenstates of the parity operator for eigenvalues±1...
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Haroche experiment.

• Haroche Wigner tomography via entangled atoms passing through a QED
cavity.

•
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Haroche experiment:

Wigner tomography of the kitten state at time t.

• To measure the displaced parity operator at time t of a state initially pre-
pared in a kitten state, displace the light state by injecting laser light at time
t − ε, then let pass one atome inside the cavity at time t + ε, the final
mesurement will deliver two outcomes excited or ground) which are in one
to one correspondence with the eigenstates of the parity operator associated
to even (+1) and odd (-1) parity.

• Repeating many times the whole process and measuring the frequencies of
occurences of excited (parity +1) and ground states (parity -1) at the output,
we have access to the average value of the parity operator.

• This delivers a picture of the quantum state of the kitten at time t.

• TIf we make use of 100 atoms to estimate the average value of the parity op-
erator, then, to make a picture with 50 times 50 Wigner amplitudes requires
2 times 50 times 50 times 100 atoms.
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Haroche experiment:

Wigner tomography of the kitten state: the movie.

• To make a movie of the quantum state of light, repeat the previous process
for several times t.

• Example: to obtain a movie with pictures taken at 100 different times re-
quires 100 times 2 times 50 times 50 times 100 atoms=5.107 atoms.

• For an initial kitten state with 10 photons, the decoherence time is of the
order of 130 miliseconds (lifetime of one photon in the cavity) divided by
10.

• The movie can thus be realized in more or less 5.105 seconds...less than 6
days..
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Haroche experiment.

• Haroche Wigner tomography: movie of decoherence of a cat state in a lossy
cavity QEDa.

•
ahttp://www.lkb.upmc.fr/cqed/non-local-quantum-states/
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Appendix A: Monte-Carlo derivation of the master equation for the state
of light in a lossy cavity.
Traditional, Monte-Carlo derivation of the Linblad master equation.

• Decoherence, dissipation and so on are characterized by a unique factor, Γ,
the loss-rate of the system.

• Let us assume that at time t the system is a n photon-Fock state (more gen-
erally an energy state that consists of n elementary excitations). During the
time interval [t, t+dt], one elementary excitation of the system is dissipated
in the environment with probability Γn dt, in which case the state at time
t should be replaced by the properly normalised (n− 1) photon Fock state
aΨS (t) /

√
n at time t + dt. Otherwise (and this happens with probability

(1− Γn dt)), no excitation is released and the state of the system at time
t + dt is equal to

√
1− Γn dt (ΨS (t) + H (1/i~) dtΨS (t)) (which is to

be normalized in the form in which it was written).
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Traditional, Monte-Carlo derivation of the Linblad master equation.
Putting everything together, on average, ρ (t) thus evolves during the time in-
terval [t, t + dt] to the Lindblad equation

ρ(t + dt) = ρ (t) +
Γn dt aρ (t) a†

n
+ dt

1

i~
[H, ρ (t)]− Γn dt

2
ρ (t) ,

Equivalent to

d

dt
ρ (t) =

1

i~
[H, ρ (t)] +

Γ

2

[
2aρS (t) a† − a†aρ (t)− ρ (t) a†a

]
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Appendix B: Derivation of the master equation for the state of light in a
lossy cavity in the IN-OUt approach: complements.
Proof that reduced pointer states obey Lindblad equation.

• We prove here that coherent states are solutions to the Lindblad master
equation of a lossy cavity. We begin by writing the system’s reduced den-
sity matrix for coherent statesexponentially decaying coherent states. It is
straightforward to see that the density matrix of such a damped coherent
state reads

ρS (t) = e−|λα(t)|2
+∞∑
k=0

+∞∑
n=0

(λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

|kS〉〈nS|.

Then we proceed to differentiate it with respect to time:

d

dt
ρS (t)

= e−|λα(t)|2
[
− |λ|2 d

dt
|α (t)|2

+∞∑
k=0

+∞∑
n=0

(λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

|kS〉〈nS| +

+∞∑
k,n=1

(
kλ

dα

dt
λ∗α∗ (t) + nλ∗

dα∗

dt
λα∗ (t)

)
(λα (t))

k−1

√
k!

(λ∗α∗ (t))
n−1

√
n!

|kS〉〈nS|





•First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

Proof that reduced pointer states obey Lindblad equation.
Thus

d

dt
ρS (t)

= e−|λα(t)|2
+∞∑
k=0

+∞∑
n=0

[
− |λ|2 d

dt
|α (t)|2 +

(
k

α (t)

dα

dt
+

n

α∗ (t)

dα∗

dt

)]
(λα (t))

k

√
k!

(λ∗α∗ (t))
n

√
n!

|kS〉〈nS|.

• We now use the Wigner-Weisskopf expression for α:

α (t) = e−iωte−
1
2Γt

which yields

d

dt
ρS (t) = e−|λα(t)|2

+∞∑
k=0

+∞∑
n=0

[
Γ

(
|λ|2 |α (t)|2 − 1

2
(k + n)

)
− iω (k − n)

]
(λα (t))

k

√
k!

(λ∗α∗ (t))
n

√
n!

|kS〉〈nS|.
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Proof that reduced pointer states obey Lindblad equation.

• Now, recalling that H = ~ωa†a:

1

i~
[H, ρS (t)] =

1

i
e−|λα(t)|2

+∞∑
k=0

+∞∑
n=0

(λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

[
ωa†a, |kS〉〈nS|

]
= −i e−|λα(t)|2

+∞∑
k=0

+∞∑
n=0

(λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

ω (k − n) |kS〉〈nS|,

while

Γ

2

[
2aρS (t) a† − a†aρS (t)− ρS (t) a†a

]
= e−|λα(t)|2

[
2

+∞∑
k=1

+∞∑
n=1

(λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

√
kn| (k − 1)S〉〈(n− 1)S |

−
+∞∑
k=0

+∞∑
n=0

[
(λα (t))

k

√
k!

(λ∗α∗ (t))
n

√
n!

k − (λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

n

]
|kS〉〈nS|

]
=

e−|λα(t)|2
+∞∑
k=0

+∞∑
n=0

[
2 |λ|2 |α (t)|2 − (k + n)

] (λα (t))
k

√
k!

(λ∗α∗ (t))
n

√
n!

n|kS〉〈nS|.
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Proof that reduced pointer states obey Lindblad equation.

• Putting everything together, we immediately see that

d

dt
ρS (t) =

1

i~
[H, ρS (t)] +

Γ

2

[
2aρS (t) a† − a†aρS (t)− ρS (t) a†a

]
is verified, which ends the proof.


