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The insight: role of empirical falsifiability in realist 
notions of classicality

These phenomena double as empirically falsifiable operational 
prerequisites for tests of the notions of classicality.

Realist notions of classicality ascribe certain operational 
phenomena a not fine-tuned realist basis.

1. Empirically falsifiable operational prerequisites of experimental 
tests
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Empirically 
falsifiable 

operational 
Phenomena

Not fine-tuned 
realist 
Basis

(Realist’s) 
Notions of 

classicality

Bell local 
causality

No signaling 
( )𝒩𝒮

Parameter Indep. 
( )𝒩𝒮Λ

Generalized 
Non contextually

Operational 
equivalence 

 P1 ≡ P2

Preparation 
noncontextuality 

 μ1(λ) = μ2(λ)
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The insight: role of empirical falsifiability in realist 
notions of classicality

On the other hand, the realist notions of classicality yield empirically 
falsifiable operational consequences, typically in the form of 
statistical inequalities.

The quantum violation of these inequalities not only highlights the 
necessity of realist fine-tuning, discarding a large class of realist 
explanations, but also powers quantum advantage in a plethora of 
computational, communication and information processing tasks.

2. Empirically falsifiable operational consequence
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The insight: role of empirical falsifiability in realist 
notions of classicality

Empirically falsifiable phenomena feature as the operational 
prerequisites, as well as the operational consequences of the realist 
notions of classicality.
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Operational interpretation of quantum theory

For the operationalist the real mystery, and the source of quantum 
advantage lies in the statistics obtained from the experiment, and 
not in the details of the particular experimental implementation,

k

P M

As a consequence of the experiment we obtain outcome statistics 
in the form of conditional probability distributions: 

{p(k |P, M)},
where   is an operational preparation and   is an 
operational measurement

P ∈ 𝒫𝒪 M ∈ ℳ𝒪



Operational interpretation of quantum theory

Quantum theory serves a two-fold purpose: 

• Prescriptions: It attributes a density operator   to each 
preparation such that  , and a POVM element to each 
measurement effect   such that  :

ρ ≥ 0
tr(ρ) = 1

Mk ≥ 0 ∑k Mk = 𝕀

k

ρ M

• Prediction: The Born-rule yields the desired conditional 
probabilities:

{p(k |P, M) = tr(ρMk)}



Realist interpretation of operational theories

Realists attribute a hidden variable (optic-state)   to each 
instance of a physical system, where   (antic-state space) is a 
measurable space

λ ∈ Λ
Λ

k

μ(λ) ξ(k |λ)

Even the realist can prescribe and predict:  
• Prescriptions: A realist theory attributes a probability 

distribution   to each preparation such that  , 
and a response scheme to each measurement effect   
such that   and    

μ(λ) ∫
Λ

μ(λ)dλ = 1
{ξ(k |λ)}

∀λ, k : ξ(k |λ) ≥ 0 ∑k ξ(k |λ) = 1

λ



Realist interpretation of operational theories

k

μ(λ) ξ(k |λ)

• Predictions: The desired statistics are computed by averaging 
the response function over our ignorance of the underlying 
antic-state  :λ

λ

{p(k |P, M) = ∫
Λ

dλμ(λ)ξ(k |λ)}



Operational properties of preparations

Consider a set of preparations  , ⃗P ≡ {Px}

x

k

Px M

We define a generic operational property for sets and subsets of the 
preparations as the maximal value of a success metric associated 
with a one-way communication task:

S(𝒪)( ⃗P ) = max
M∈ℳ𝒪

{∑
x,k

cx
k p(k |Px, M)}



Empirical falsifiability of operational properties

For any set of preparations   the properties of the 
form   constitute empirically falsifiable properties, as if one 
can experimentally falsify the operational theory or its prescriptions 
by attaining a higher value of the success metric  .

⃗P ≡ {Px ∈ 𝒫𝒪}
S(𝒪)( ⃗P )

S(P)



Operational properties of quantum preparations

For a set of quantum preparations  , ⃗ρ = {ρx}

x

ρx M

Finding the maximal value of a success metric associated with a 
one-way communication task constitutes a semi-definite program:

S(𝒬)( ⃗ρ ) = max
M∈ℳ𝒬

{∑
x,k

cx
k tr(ρxMk)}

k



(Not fine-tuned) realist properties

For a set of realist preparations  , ⃗μ ≡ {μx(λ)}

Finding the maximal value of a success metric associated with a 
one-way communication task constitutes a linear program:

S(Λ)( ⃗μ ) = max
{ξ(k|λ)}

{∑
x,k

cx
k ∫Λ

dλμx(λ)ξ(k |λ)}

x

μx(λ) ξ(k |λ)λ
k



As the set of response schemes constrained by only by positivity and 
completeness forms a convex polytope with deterministic response 
functions as extremal points, we can solve the maximization by picking the 
response functions that for each ontic-state  , yield the outcome   which 
maximises the function   such that,

λ k
∑x cx

k μx(λ)

S(Λ)( ⃗μ ) = ∫Λ
dλ max

k
{∑

x

cx
k μx(λ)}

This expression further substantiates the fact that the maximization over 
response schemes relieves   from its dependence on response 
schemes, deeming it an exclusive property of the set of epistemic states 
 . 

S(Λ)( ⃗μ )

⃗μ ≡ {μx}n
x=1

(Not fine-tuned) realist properties



Completeness of operational theories

Empirically complete theories 
An operational theory or a fragment thereof is said to be 

empirically complete if for all sets of preparations
 , and all associated empirically falsifiable 

operational properties  , there exists underlying sets 
of epistemic states   with not fine-tuned realist 

properties  such that, 
 

⃗P ≡ {Px ∈ 𝒫𝒪}
S(𝒪)( ⃗P )
⃗u ≡ {μx}

S(Λ)( ⃗μ )
S(Λ)( ⃗μ ) = S(𝒪)( ⃗P )

• This is a generalisation of Bounded Ontological Distinctness (BOD) 
introduced in Quantum 4, 345 (2020) 

• Also a generalisation of the no-fine tuning principle



Set distinguishability

x ∈ [n]

k = {i1, …, im} ⊂ [n]

Px M

Maximum success probability of correctly guessing which non-
trivial  -member subset a given preparation   belongs to.m Px

D(𝒪)
n,m( ⃗P ) =

1
n

max
M ∑

i1<…<im
∑

x∈{i1,…,im}

{p(k = {i1, …, im} |Px, M)}



Set distinguishability

x ∈ [n]

k = {i1, …, im} ⊂ [n]

Px M

Maximum success probability of correctly guessing which non-
trivial  -member subset a given preparation   belongs to.m Px

D(𝒪)
n,m( ⃗P ) =

1
n

max
M ∑

i1<…<im
∑

x∈{i1,…,im}

{p(k = {i1, …, im} |Px, M)}



Anti-Distinctness of three epistemic states

μx(λ) ξ(k |λ)λ

x ∈ [n]

k = {i1, …, im} ⊂ [n]

D(Λ)
n,m =

1
n ∫Λ

dλ max
i1<…<im∈[n] ∑

x∈{i1,…,im}

{μx(λ)}



Average set distinguishability 

D̄(𝒪)
n ( ⃗P ) =

1
n − 1

n−1

∑
m=1

D(𝒪)
n,m( ⃗P ),

The average maximum success probability of correctly guessing 
which non-trivial $m$-member subset a given preparation $P_x$ 
belongs to,



Average pairwise distinguishability 

D̄(𝒪)
n ( ⃗P ) =

1

(n
2) ∑

i<j

D(𝒪)
2,1({Pi, Pj}),

The average of maximum success probability of perfectly 
distinguishing distinct pairs of preparations  ,      {Pi, Pj ∈ {Px}}

D(𝒪)
2,1({Pi, Pj}) = 1

2 maxM∈ℳ𝒪
{∑x∈{i,j} p(k = x |Px, M)}

where,



Theorem: The Equalities

Theorem: For any empirically complete theory, for any 
given set of   preparations , the average set 

distinguishability is exactly equal to average pair-wise 
distinguishability, i.e.,  
 

n ⃗P ≡ {Px}n
x=1

D̄(𝒪)
n ( ⃗P ) = D̄(𝒪)

n ( ⃗P ) .



For any three real number  ,  the following identity holds:{μx ∈ ℝ}3
x=1

∑
i<j∈[3]

max
x∈{i, j}

{μx} = max
x

{μx} + max
i<j∈[3]

{μi + μj}

Proof: Consider the associated ordered list   
such that  , then, 

   

 

{a, b, c ∈ ℝ}
a ≥ b ≥ c

max
x

{μx} + max
i<j∈[3]

{μi + μj} = 2a + b

∑
i<j∈[3]

max
x∈{i,j}

{μx} = 2a + b

Proof: From “a first course in probabilities”
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Proof: From “a first course in probabilities”

For  any three real measures  , as 

 , the following identity holds:

⃗μ ≡ {μx(λ)}3
x=1

∀x ∈ [3], ∀λ ∈ Λ : μx(λ) ∈ ℝ

∑
i<j∈[3]

max
x∈{i, j}

{μx(λ)} = max
x

{μx(λ)} + max
i<j∈[3]

{μi(λ) + μj(λ)}

Summing of over  , we obtain for any three general (possibly negative) 
realist preparations ,

λ
{μx(λ) ∈ ℝ}3

x=1

1
6 ∫Λ

dλ ∑
i<j∈[3]

max
x∈{i, j}

{μx(λ)} =
1
6 ∫Λ

dλ max
x

{μx(λ)} +
1
6 ∫Λ

dλ max
i<j∈[3]

{μi(λ) + μj(λ)}

D̄(Λ)
3 ( ⃗μ ) = ∑i<j D(Λ)

2,1({μi, μj}) = 1
2 (D(Λ)

3,2( ⃗μ ) + D(Λ)
3,1( ⃗μ )) = D̄(Λ)

3 ( ⃗μ )
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Theorem: Quantum-Mechanical Description of Reality is Empirically Incomplete

Theorem: Quantum theory prescribes sets of preparations 
for which there exists no realist interpretation such that 

  for all operational properties  S𝒬 = SΛ S



Proof: Incompleteness of Quantum Description of Reality

Theorem: Quantum theory prescribes sets of preparations 
for which there exists no realist interpretation such that 

  for all operational properties  S𝒬 = SΛ S

⇢1

2⇡
3

⇢3

2⇡
3

⇢2

{⇢x}

Consider the following set of three qubit states: 

⃗ρ △ ≡



Proof: Incompleteness of Quantum Description of Reality

The total pair-wise distinguishability of these states is,

D̄(𝒬)
3 ( ⃗ρ △) =

1
2

(1 +
3

2
) ≈ 0.933

M 1,2
1

M 1,2
2

⇡
6

⇡
6

M 3,1
3

M 3,1
1

⇡
6
⇡
6

M 2,3
2M 2,3

3
⇡
6

⇡
6

{M 1,2
k },{M 2,3

k },{M 3,1
k }



Proof: Incompleteness of Quantum Description of Reality

The distinguishability of these states is,

D(𝒬)
3,1( ⃗ρ △) =

1
3

max
M

{∑
x

tr(ρxMk=x)} =
2
3

M1

2⇡
3

M3

2⇡
3

M2

{Mk}



Proof: Incompleteness of Quantum Description of Reality

These states are completely anti-distinguishable, i.e.,

D(𝒬)
3,2( ⃗ρ △) = 1

M1

2⇡
3

M3

2⇡
3

M2

{Mk}



Proof: Incompleteness of Quantum Description of Reality

Lemma: For any complete operational theory, and any 
three given preparations  ,   

  

{Px}3
x=1

D𝒪 = D𝒪 + D𝒪

But we have,

Δ(𝒬)
3 ( ⃗ρ △) =

3 3 − 4
12

≈ 0.0997
(A measure of quantum theory’s incompleteness with  
respect to a given set of quantum preparations)



k

ρ Mρ

Implication: Discarding even last only escape back to classicality

• Consider a non outcome-independent, non-convex classical (realist) 
model of quantum theory, such a  -ontic model is ``local”, non-
contextual (Leibnitzian). It is how our machines store quantum stuff

ρ

• However, any realist interpretation of quantum theory must be 
incomplete, i.e., violate BOD, as we made no assumptions about 
convexity, or composite systems we have,

No way back to 
classicality



Characterising quantum deviation from the three preparation equality

All (Haar uniformly) randomly sampled triplets of pure states and 
density operators deviate from the equalities

Any deviation from the equality implies quantum advantage in suitable 
constrained communication task



Increasing quantum deviation



Summary

We introduced a novel notion of classicality, 
• Defined in this way, empirical completeness underlies other well-known 

notions of classicality.  
As the distinguishability of a set of preparations forms an empirically falsifiable operational 
property, empirical completeness directly implies (symmetric) maximal  -epistemicity, bounded 
ontological distinctness of preparations, and preparation noncontextuality. While these 
implications follow directly from the definition of these notions, equipped with quantum theory 
dependent assumptions, empirical completeness can also be shown to imply generalized 
noncotextuality, Kochen-Specker noncontextuality and Bell local-causality. 

• Other notions of classicality have zero measure operational pre-
requisites and stochastic inequality as empirically falsifiable 
operational consequences 
However, empirical completeness has robust operational pre-requisite 
and zero measure empirically falsifiable operational consequences, 
which makes for easy and abundant quantum violation

ψ
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