"From the 1st to the 2nd quantum revolution: Theory and applications", Peyresq School France- 2021 Septembre 20th-24th

40 years of Bell tests

Anaïs Dréau

Laboratoire Charles Coulomb, CNRS & Montpellier University, France

CNTS CONT

anais.dreau@umontpellier.fr

measurement outcomes locally random but at distance perfectly correlated!

Quantum non-locality or local realism?

S $2\sqrt{2}$ 2 0 local quantum mechanics realism

Clauser, Horne, Shimony, Holt , PRL 23 (1969)

$$S = |\langle x \cdot y \rangle_{(0,0)} + \langle x \cdot y \rangle_{(0,1)} + \langle x \cdot y \rangle_{(1,0)} - \langle x \cdot y \rangle_{(1,1)}|$$

. Intro

Cheating strategies on the CHSH game

Cheating strategies on the CHSH game

. Intro

Cheating strategies on the CHSH game

A journey through the Bell tests

1. Closing the locality loophole

2. Closing the detection loophole

3. Loophole-free Bell tests

A journey through the Bell tests

1. Closing the locality loophole

2. Closing the detection loophole

3. Loophole-free Bell tests

Conditions to close the locality loophole

Changing the settings on the flight of the photons

Bell parameter S vs polarizers' relative angle

Λ

Aspect, arXiv:quant-ph/0402001 (2004)

L/c = 40ns > setting switching time

$$\label{eq:general} \begin{array}{|c|c|} \hline \mbox{adapted CHSH inequality:} & -1 \leq S \leq 0 \\ \hline \mbox{$S_{exp}=0.101\pm0.020$} \\ \hline \mbox{$S_{exp}=0.101\pm0.020$} \\ \hline \mbox{$S_{QM}=0.112,t_{acq}>3h$} \end{array} \\ \begin{array}{|c|} \hline \mbox{Bell inequality} \\ \hline \mbox{$violation!$} \\ \hline \mbox{$violation!$} \\ \hline \mbox{$s_{exp}=0.112,t_{acq}>3h$} \end{array} \\ \end{array}$$

Settings chosen by fast random number generator

Settings chosen by fast random number generator

1. locality loophole

Fully closing the locality loophole

locality loophole closed

CHSH inequality:
$$S \leq 2$$

 $S = 2.37 \pm 0.02$
 $(t_{acq} = 40 \min)$

1. locality loophole with satellite-to-ground connections

Yin et al., Science **356** (2017) – (Pan's group, Heifei, China)

1st Bell test with spaceto-ground connection

CHSH inequality:
$$S \leq 2$$

 $S = 2.37 \pm 0.09$
 $(t_{acq} \simeq 20 \, {
m min})$

locality loophole closed

A journey through the Bell tests

1. Closing the locality loophole *but fair-sampling assumption*

2. Closing the detection loophole

3. Loophole-free Bell tests

Condition to close the detection loophole

Closing the detection loophole with trapped ions

... and with superconducting circuits

Ansmann et al., Nature 461 (2009) – (Martinis's group, Santa Barbara, USA)

entangled pair:

qubits

two Josephson phase

detection loophole

the qubits are detected all the time!

single-shot readout of the qubit state:

measurement fidelities ~ 94%

1 mm

entanglement fidelity with the Bell singlet state ~ 88%

... and with photons!

Guistina et al., Nature 497 (2013) – (Zeilinger's group, Vienna, Austria)

Eberhard inequality includes undetected events !

$$J = -n_{oo}(\alpha_{1},\beta_{1}) + n_{oe}(\alpha_{1},\beta_{2}) + n_{ou}(\alpha_{1},\beta_{2}) + n_{eo}(\alpha_{2},\beta_{1}) + n_{uo}(\alpha_{2},\beta_{1}) + n_{oo}(\alpha_{2},\beta_{2}) \ge 0$$

detection loophole

closed if with efficiency >2/3

Alice's arm efficiency ~ 74% Bob's arim efficiency ~ 79%

(detector: superconducting TESs)

Eberhard inequality: $J \geq 0$ $J = -126,715 \pm 1,837$

A journey through the Bell tests

1. Closing the locality loophole *but fair-sampling assumption*

2. Closing the detection loophole but no-signaling assumption

3. Loophole-free Bell tests

locality loophole & detection loophole both closed!

Entangled spins in diamond Hanson's group (Delft) 2015

Hensen et al., Nature 119 (2015)

Entangled photons

Zeilinger's group (Vienna) 2015 NIST (Boulder) 2015

Giustina *et al., PRL* **115** (2015) Shalm et al., *PRL* **115** (2015)

Entangled atoms

Weinfurter's group (Munich) 2016

Rosenfeld et al., PRL 119 (2017)

a loophole-free Bell test with spins in diamond

!!! solid-state artificial atom !!!

Requirements

- close both the detection and locality loopholes
- quantum correlations must exceeds the local realist bound
 - -> high entanglement fidelity, fast manipulation with high fidelity, fast readout with high fidelity...

The NV center: a « trapped-atom » in diamond

Spin-resolved optical excitation @ T< 10 K

Resonant excitation

Spin-conserving transition

ground state = electronic spin triplet (S = 1)

Initialization and readout by resonant excitation

Initialization and readout by resonant excitation

Microwave coherent control

Many related works by Stuttgart, Harvard, Chicago, Ulm,...

Generating long-distance entanglement

Bernien et al., Nature 497 (2013)

A loophole-free Bell test in Delft

Challenge: getting indistinguishable photons

Oun

d.c. Stark tuning of NV centres: Tamarat et al., PRL **97** (2006) Bassett et al., PRL **107** (2011) Bernien et al., PRL **108** (2012)

Challenge: getting indistinguishable photons

The long-distance entanglement protocol

Brendel et al., PRL **82** (1999)

25.5

Entanglement check: correlation measurements

Experimental scheme (1)

Experimental scheme (2)

Experimental scheme (3)

Experimental scheme (4)

Experimental scheme (5)

Experimental scheme (5)

probability that any local realist model could have produce the data :

p-value = 0.039

Level of significance?

The Boulder loophole-free Bell test with photons

Clauser-Horne type inequality:

 $P(++|ab) \le P(+0|ab') + P(0+|a'b) + P(++|a'b').$

30 min per run, 180 millions entangled pairs detected! maximum propability that experiment statistics produced by local realim:

$$p = 2.3 \cdot 10^{-7}$$

The Vienna loophole-free Bell test with photons

CH-Eberhard type-inequality: $J \equiv p_{++}(a_1b_1) - p_{+0}(a_1b_2) - p_{0+}(a_2b_1) - p_{++}(a_2b_2) \le 0.$

$$p = 3.7 \cdot 10^{-31}$$

3500 entangled pairs per second!

The Munich loophole-free Bell test with atoms

Rosenfeld *et al.*, *PRL* **119** (2017) – (Weinfurter's group)

entanglement between 2 single ⁸⁷Rb atoms in an optical dipole trap

5000 events during 4 days!

« Death by experiment of local realism »

Wiseman, Nature 526 (2015)

What is next?

True randomness? True free-will?

quantum random number generator ?

or human choice?

QRNG

or combine them?

the NIST loophole-free Bell test -Shalm et al., *PRL* **115** (2015)

settings chosen by humans with online game

settings chosen by quasars billions of years ago Rauch *et al.*, *PRL* **121** (2018) – (Zeilinger's group)

Applications of Bell tests

Applications : device-independent protocols

randomness expansion Pironio et al., Nature 464 (2010)

 \longrightarrow quantum key distribution

Acín *et al., PRL* **98** (2007)

Colbeck, Physics 7 (2014)

