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EINSTEIN’S BOXES

A single particle is in Box B. One cuts

the box in two half-boxes,

| state > = | B >

The state becomes

−→ 1√
2
(|B1 > +|B2 >)

where |Bi > = particle “is” in box Bi, i =
1, 2.



The two half-boxes B1 and B2 are then sepa-

rated and sent as far apart as one wants.

If one opens one of the boxes (say B1) and

that one does not find the particle, one knows

that it is in B2. Therefore, the state “collapses”

instantaneously and in a non local way.

One opens box B1 −→ nothing

This is a “measurement”, therefore state −→

|B2 >

(and, if one opens the box B2, one will find

the particle !).



Is the reduction or collapse of the

| state > a real (= physical) operation

or does it represent only our knowledge (=

epistemic) ?

If physical −→ A non local form of causality

exists

(= action at a distance).

If epistemic −→ quantum mechanics “incom-

plete” : there exists other variables than the

quantum state that describe the system.

These variables would tell in which half-

box the particle IS before one opens either

of them.



Einstein certainly thought that this argument

proves the incompleteness of quantum mechan-

ics, since, for him (and probably for everybody

else at the time), actions at a distance were un-

thinkable.

But let us put aside for now the issue of com-

pleteness and prove non locality directly.



WHAT IS NON LOCALITY ?

Non local causality (causality NOT mere corre-

lation)

Properties

1. Instantaneous

2. a. Extends arbitrarily far

b. The effect does not decrease with the

distance

3. Individuated

4. Can be used to transmit messages

Newton’s gravity : 1, 2a and 4

Post-Newtonian physics (e.g. field theories) : 2a

and 4

Is there a phenomenon with properties : 1-3 ?
(Not 4 → pseudoscience).



PROOF OF NONLOCALITY
THROUGH ANALOGY

X ←−

ALICE BOB

−→ Y

3 questions 1,2,3

2 answers yes/no

Questions and answers vary. But when the

same question is asked at X and Y , Alice and

Bob always give the same answer.

Only two possibilities: either the answers are
predetermined or there exists a form of causality
at a distance after one asks the questions.



This is the Einstein Podolsky and Rosen (EPR-

1935) argument (in Bohm’s formulation). Let

us call that the EPR DILEMMA.

One horn of the dilemma means nonlocality.

The other horn means that the answers are

predetermined.

This dilemma concerns what happens in every

single experiment, not just in the statistics of

their results.

BUT

That second assumption

(alone)

leads to a contradiction with observations made

when the questions are different.

Bell (1964)



PROOF

There are 3 Questions 1 2 3

and 2 possible Answers Yes/No

If the answers are given in advance, there ex-

ists 23 = 8 possibilities :

1 2 3

Y Y Y

Y Y N

Y N Y

Y N N

N Y Y

N Y N

N N Y

N N N

In each case there are at least two questions
with the same answer.



Therefore,

Frequency (answer to 1 = answer to 2)

+ Frequency (answer to 2 = answer to 3)

+ Frequency (answer to 3 = answer to 1) ≥ 1

BUT,

in some experiments,

Frequency (answer to 1 = answer to 2)

= Frequency (answer to 2 = answer to 3)

= Frequency (answer to 3 = answer to 1)

=
1

4

⇒ 3

4
≥ 1

FALSE !

⇒ CONTRADICTION



EXPERIMENTS



EXAMPLE OF “DATA”

1Y1Y 1Y3Y 1Y 2N

1N3Y 2N3Y 2N2N

1N2Y 3Y 2N 1Y 2N

1Y 3N 3Y3Y 1N1N

2Y2Y 1N2N 1N2Y

3N1Y 1Y 2N 1N3Y

2N2N 3N3N 1Y3Y

1N1N 3Y 2N 3N2N

1Y 3N 2Y3Y 1Y1Y

2N1Y 3Y 2N 1N3Y

2N2N 3N1N 1Y1Y

2Y1Y 1N1N 1N3Y

2N3Y 3Y 2N 1N2Y

2Y2Y 3N1Y 3Y3Y

1Y 3N 2N1Y 3Y2Y

1N1N 1N2Y 3Y 2N

2N1N 2N2N 1Y1Y

3N3N 3N2Y 1N3Y



PROOF OF NONLOCALITY USING

QUANTUM MECHANICS

A and B are replaced by particles

At X and Y there are are Stern-Gerlach ap-

paratuses that “measure the spin” along some

direction.

Below we will let 1, 2, 3 = 3 possible directions

for that “measurement”.

Yes/No = Up/Down.

But let us consider first a

| state of the two particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

This is called an “ENTANGLED STATE”.



  

H
1H1

X Y

A B

Meaning of the state:

1√
2

(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

One sends two particles A and B, towards

boxes located at X et Y , that are perpendicu-

lar to the plane of the picture. In each box there

is magnetic field H oriented in the vertical di-

rection, denoted 1.



  

H
1H1

X Y

A B

1√
2

(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

One possibility is that particle A goes up-

wards, meaning in the direction of the gradi-

ent of the field and particle B goes downwards,

meaning in the direction opposite to the one of

the gradient the field.



  

H
1H1

X Y

A B

Another possibility is that particleA goes down-

wards, meaning in the direction opposite to the

one of the field and particle B goes upwards,

meaning in the direction of the gradient of the

field.

One never sees both particles going in the

direction of the gradient of the field or in the

opposite direction.



Now assume that there is no action at a dis-

tance of any sort, namely no influence of the

measurement on one side on the result on the

other side.

Then, in order to account for those perfect

anti-correlations, we are obliged to assume that

the results on both sides are predetermined by

“instructions” (whether to up or down in a given

direction) carried by the particles.



So, let introduce “random variables” A(1) =

±1, B(1) = ±1, where A(1) = +1 means that

the A particle will go in the direction of the

gradient of the field, and A(1) = −1 means that

the A particle will go in the direction opposite

to the one of the field, and similarly for B(1) =

±1.

These are “random variables” in the sense that

those values vary from one run of the experi-

ment to the next.



The “random variables” A(1) = ±1, B(1) =

±1 are “hidden variables” in the sense that they

are not included or determined by the quantum

state:

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

They are analogous to the index of the half-

box in Einstein’s boxes experiment.



Consider now three possible orientations for

the gradient of the magnetic field, denoted H1,

H2, H3, in a plane perpendicular to the motion

of the particles.

One repeats many times the experiment, by

choosing “at random” the orientation of the gra-

dient of the field on both sides.

When the orientations are the same on both

sides, the two particles always go in opposite

directions.



Indeed, the state considered here has the same

form in all directions:

| state of the two particles >

= 1√
2
(|A 1 ↑> |B 1 ↓> −|A 1 ↓> |B 1 ↑>)

= 1√
2
(|A 2 ↑> |B 2 ↓> −|A 2 ↓> |B 2 ↑>)

= 1√
2
(|A 3 ↑> |B 3 ↓> −|A 3 ↓> |B 3 ↑>)



The reasoning made above (as a consequence

of simply assuming no action at a distance) im-

plies that we are obliged to assume that the re-

sults on both sides are predetermined by “in-

structions” (whether to up or down in a given

direction) carried by the particles, in all three

directions.



So, let introduce “random variables” A(α) =

±1, B(α) = ±1, for α = 1, 2, 3 labelling the

direction, and where A(α) = +1 means that

the A particle will go in the direction of the

gradient of the field when the latter is oriented

in direction α, and A(α) = −1 means that the

A particle will go in the direction opposite to the

one of the field, and similarly for B(α) = ±1.



But, in order to account for the perfect anti-

correlations, we must always have:

A(α) = −B(α)

∀α = 1, 2, 3.



Now, since A(α) takes only two values and

since there are three choices of directions (1, 2,

3), whatever the values of the random variables

A(α), we must, for each set of values, have ei-

ther

A(1) = A(2)

A(1) = A(3)

A(2) = A(3)

(or all three could be equal).



So, by simply assuming that those values ex-

ist, we must have:

Frequency (A(1)= A(2))

+ Frequency (A(1)= A(3))

+ Frequency (A(2)= A(3)) ≥ 1.

But, since we have

A(α) = −B(α)

∀α = 1, 2, 3.

we must have

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3)) ≥ 1.



Let us choose, for example, direction 1 at X

and direction 2 at Y .



If particle A goes in the direction of the gradi-

ent of the field (meaning A(1) = +1), as in the

picture, then particle B will go in the direction

of the gradient of the field (meaningB(2) = +1)

75% of the time and in the opposite direction

(meaning B(2) = −1) 25% of the time (and

vice-versa).

One obtains the same results with the 5 other

choices of pairs of different orientations of the

gradient of the field at X and Y .



But that means that A(1) = −B(2) only a

quarter of the time, i.e.

Frequency (A(1)= -B(2))

= Frequency (A(1)= -B(3))

= Frequency (A(2)= -B(3)) =1
4.

But then:

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3))

=3
4 < 1



This contradicts

Frequency (A(1)= -B(2))

+ Frequency (A(1)= -B(3))

+ Frequency (A(2)= -B(3))

≥ 1,

which followed from only assuming that those

values A(α), B(α) exist.

And that assumption followed from the one of

locality, i.e. no action at a distance of any sort,

namely no influence of the measurement on one

side on the result on the other side.

Therefore, that latter assumption is false.

Ergo: the world in non-local.

The number 1
4 mentioned above, for the anti-

correlations with an appropriate choice of the

directions 1, 2, 3, is derived in the Appendix.



Let us see how this experiment is described in

the quantum formalism:

|state of both particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

= 1√
2
(|A 2↑> |B 2↓> −|A 2↓> |B 2↑>)

= 1√
2
(|A 3↑> |B 3↓> −|A 3↓> |B 3↑>)

If one “measures” the spin in direction 1 for the

A particle and if one sees ↑, the state becomes

⇒ |A 1↑> |B 1↓>.

If one sees ↓, the state becomes ⇒ |A 1↓>

|B 1↑>.



The same holds if one measures the spin in

directions 2 or 3; collapse of the quantum state!

But then, the state has changed also non lo-

cally for the B particle.



Same dilemma as for Einstein’s boxes :

reduction of the | state > = physical or epis-

temic ?

If physical −→ non locality

If epistemic −→ “answers” are given in ad-

vance, i.e. the particle at B is 1 ↑ or 1 ↓, 2 ↑ or

2 ↓, 3 ↑ or 3 ↓, before any measurement at A.



The only way to maintain that this collapse is

not physical is to assume what we just said:

That there exist “random variables” A(α) =

±1, B(α) = ±1, on top of the quantum state

that determine which way the particle will go if

one measures its spin (A(α) = +1 means that

the A particle will go in the direction of the

gradient of the field, andA(α) = −1 means that

the A particle will go in the direction opposite to

the one of the gradient of the field, and similarly

for B(α) = ±1).



Then, it would make sense to say that the

quantum state is only about “information”, and

that the collapse of that state occurs only be-

cause we “learn” something about the system.

BUT, what Bell shows it that the mere suppo-

sition that those variables exist leads to a con-

tradiction!



BELL WAS QUITE EXPLICIT

ABOUT WHAT THIS MEANS

“Let me summarize once again the logic that

leads to the impasse. The EPRB correlations

are such that the result of the experiment on

one side immediately foretells that on the other,

whenever the analyzers happen to be parallel.”

(In EPRB, B refers to Bohm who reformulated

the EPR argument in terms in spin, which we

use here. EPR spoke of position and momen-

tum.)



“If we do not accept the intervention on one

side as a causal influence on the other, we seem

obliged to admit that the results on both sides

are determined in advance anyway, independently

of the intervention on the other side, by signals

from the source and by the local magnet set-

ting. But this has implications for non-parallel

settings which conflict with those of quantum

mechanics. So we cannot dismiss intervention

on one side as a causal influence on the other.”

J. BELL



THE TROUBLE WITH RELATIV-

ITY

COMING FROM THE RELATIVITY

OF SIMULTANEITY



Consider three frames of reference: the green,

bue and red lines indicate events that are simul-

taneous with respect to each of these reference

frames



The x axis corresponds to all the events simul-

taneous with A relative to the green reference

frame.

The x′ axis corresponds to all the events si-

multaneous with A relative to the red reference

frame.

The x” axis corresponds to all the events si-

multaneous with A relative to the blue reference

frame.



Event B is simultaneous with A relative to

the green reference frame but occurs before A

relative to the blue reference frame and occurs

after A relative to the red reference frame



  

t

xA'

A

t
B
=0

B

The x axis represents the t = 0 axis in a ref-

erence frame where A is at rest. Suppose that

one can send a message instantaneously from A

to B (B is in the present of A).

But if in B one considers a reference frame

in motion with respect to the one where A is

at rest, then the present in that reference frame

could be represented by the line tB = 0.



  

t

xA'

A

t
B
=0

B

If one can send a message instantaneously from

A to B, then B can send a message instanta-

neously to A′, which is the past of A.

That would of course create “causal loops”.



What happens in the quantum formalism:

|state of both particles >

= 1√
2
(|A 1↑> |B 1↓> −|A 1↓> |B 1↑>)

If one measures the spin in direction 1 at X ,

before measuring it at Y , and if one sees ↑, the

state becomes ⇒ |A 1↑> |B 1↓>.

If one sees ↓, the state becomes ⇒ |A 1↓>

|B 1↑>.

One then changes instantaneously the state

of B.

But if one measured the spin in direction 1 at

Y , before measuring it at X , one would change

instantaneously the state of A.

But who measures first depends on the ref-

erence frame !!!



The only solution would be to have an “epis-

temic” view of the quantum state so that there

will be no real action at a distance and the mea-

surements would simply reveal pre-existing val-

ues of the spin.

However, Bell showed that this “solution” im-

plies a contradiction (3
4 ≥ 1).

But if there are instantaneous actions, then

relativity implies the existence of actions on the

past in certain reference frames.



All our intuitive notion of causality

collapses, because this notion is based

on the idea that causes precede effects

in an absolute sense that does not de-

pend on the reference frame.

Unless one introduces a privileged reference

frame in which “true” causality holds.

The least one can say is that this contradicts

the spirit of relativity!!



What about QFT or relativistic quantum me-

chanics ?

In standard textbooks, the reduction or col-

lapse of the quantum state is never discussed

in relativistic terms −→ the question raised by

EPR and Bell is not even raised.



Luckily, one cannot use EPR-Bell to

send messages

If one could, then, as we just saw, relativity

implies that one could send messages into one’s

own past.

BUT:

— Each side sees a perfectly random sequence

of YES/NO.

— There is no way to control, by acting on one

side, which answer will be received.

— So, one cannot use this mechanism to send

messages.



— BUT if each person tells the other which

“measurements” have been made (1, 2 or 3),

then, they both know which result has been

obtained on the other side when the same

measurement is made on both sides.

⇒ Then, they both share a common se-

quence of YES/NO , which is form of “in-

formation”. Since that information cannot

possibly come from the source (because of

Bell), some sort of nonlocal transmission of

information has taken place.

— That is the basis of quantum cryptography

and quantum information.



But the problem of causality remains.

It cannot be solved by just saying “one cannot

send messages”.

Messages are far too anthropocentric.

If one chooses a privileged reference frame in

which true causality holds, then, the argument

showing that one cannot send messages also im-

plies that this reference frame is unobservable.

CHOOSE YOUR POISON!



NONLOCALITY IN THE DE BROGLIE–

BOHM THEORY

In the de Broglie-Bohm’s theory, the state of

system is a pair (X,Ψ), whereX = (X1, . . . , XN )

denotes the actual positions of all the particles

in the system under consideration, and

Ψ = Ψ(x1, . . . , xN )

is the usual quantum state, (x1, . . . , xN ) denot-

ing the arguments of the function Ψ. X are the

hidden variables in this theory; this is obviously

a misnomer, since particle positions are the only

things that we ever directly observe (think of the

double-slit experiment for example).



So, from the point of view of the de Broglie–

Bohm theory, quantum mechanics is incom-

plete : the complete state includes other vari-

ables, namely the positions of the particles.

Of course, those variables specify in which half-

box the particle is before one opens either of

them in Einstein’s boxes experiment. So, there

is no paradox with the boxes from the point of

view of the de Broglie–Bohm theory!



In the dynamics of the de Broglie-Bohm’s the-

ory, both objects, Ψ and X , evolve in time:

1. SCHRÖDINGER’S EQUATION : for the

quantum state, at all times, and whether one

measures something or not

Ψ0→ Ψt = U(t)Ψ0

i~∂tΨ(x1, . . . , xN , t) = (HΨ)(x1, . . . , xN )

where H is the Hamiltonian: H = −1
2∆ + V ,

and V is the potential.

THE QUANTUM STATE NEVER COLLAPSES.



2. GUIDING EQUATION The evolution of the

positions is guided by the quantum state: writ-

ing Ψ = ReiS

d

dt
Xk(t) =

~
mk
∇kS(X1(t), . . . , XN (t))

for k = 1, . . . , N , where X1, . . . , XN are the

actual positions of the particles.



Double slit experiment : numerical

solution in the de Broglie-Bohm the-

ory.

Motion in vacuum highly non classical !! Note

that one can determine a posteriori through which

hole that particle went !



Note also the presence of a nodal line: by sym-

metry of Ψ, the velocity is tangent to the middle

line; thus, particles cannot cross it.



It is clear that [the results of the double-

slit experiment] can in no way be recon-

ciled with the idea that electrons move in

paths. [. . . ] In quantum mechanics

there is no such concept as the path of a

particle.

LANDAU AND LIFSHITZ



JOHN BELL:

It is not clear from the smallness of the scin-

tillation on the screen that we have to do with

a particle? And is it not clear, from the diffrac-

tion and interference patterns, that the motion

of the particle is directed by a wave? De Broglie

showed in detail how the motion of a particle,

passing through just one of two holes in the

screen, could be influenced by waves propagat-

ing through both holes.





And so influenced that the particle does not

go where the waves cancel out, but is attracted

to where they cooperate. This idea seems to

me so natural and simple, to resolve the wave-

particle dilemma in such a clear and ordinary

way, that it is a great mystery to me that it was

so generally ignored.

J. BELL



In the de Broglie–Bohm theory, both objects,

the quantum state and the particles’ positions,

evolve according to deterministic laws, the quan-

tum state guiding the motion of the particles.

Thus, since the de Broglie–Bohm theory is

deterministic, the result of any quantum mea-

surement will be determined beforehand by the

quantum state AND by the configuration of the

“measuring device”.



Consider a Stern-Gerlach apparatus “measur-

ing” the spin. Let H be the magnetic field. The

arrow indicates the direction of the gradient of

the field.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



The |1 ↑> part of the state always goes in the

direction of the gradient of the field, and the

|1 ↓> part always goes in the opposite direction.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



But if the particle is initially in the upper

part of the support of the wave function (for

a symmetric wave function), it will always go

upwards. That is because there is a nodal line

in the middle of the figure that the particles

cannot cross.

  

H

x

z

 z  ∣1 ∣1  

Initial position of the electron

 z−t 

 zt 

Direction of the gradient of the field

Direction opposite to the gradient of the field

1  

1  

0



as here



Now, repeat the same experiment, but with

the direction of the gradient of the field reversed,

and let us assume that the particle starts with

exactly the same wave function and the same

position as before.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



The particle is initially in the upper part of

the support of the wave function, and, thus, it

will still go upwards, because of the nodal line.

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



But going upwards means now going in the

direction opposite to the one of the gradient of

the field (since the latter is reversed).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, the particle whose spin was “up”, will

“have” its spin “down”, although one “mea-

sures” exactly the same observable (the spin in

the vertical direction), with exactly the same

initial conditions (for both the wave function

and the position of the particle).

  

H

x

z

Ψ(z) ( ∣1 ↑>+∣1 ↓> )

Initial position of the electron

Ψ(z−t )

Ψ(z+t )

Direction opposite to the gradient of the field

Direction of the gradient of the field

1  

1 ↑ >



So, with two different arrangements of the ap-

paratus measuring the same spin operator, we

get different results, for the same initial condi-

tions of the particle.

This is related to (and explains) the nonlocal

character of the de Broglie–Bohm theory.



Two particles,A andB are sent towards boxes,

located at X and Y , that are perpendicular to

the plane of the figure, and in which there is a

magnetic field H whose gradient is oriented up-

wards along the vertical axis, denoted 1. The

wave function associated to the particles are

represented by disks.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



In the boxes, the wave function split into two

parts, one going upward in the direction of the

gradient of the field, the other going downward,

in the direction opposite to the one of the field.

The particle positions are indicated by dark dots.

  

H
1H1

X Y

A B
OR

Initial position
of particle A

Final position
of particle A

Final position
of particle B

Initial position
of particle A

Initial position
of particle B



Suppose that we measure the spin of the A

particle first. In the de Broglie–Bohm theory,

if the A particle starts initially above the hor-

izontal line in the middle of the figure (at the

level of the two arrows), it will always go in the

upward direction, namely in the direction of the

gradient of the field.
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But then, since the wave function of the two

particles are such that they are (anti)-correlated,

the B particle will have to go in the direction

opposite to the one of the field namely down-

wards.
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Now, suppose that we reverse the orientation

of the gradient of the field on the left relative to

the one of the previous figure, but do not change

anything on the right and again measure of the

spin on the left first.
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Measure the spin of the A particle first. In

the de Broglie–Bohm theory, if the A particle

starts initially above the horizontal line in the

middle of the figure (at the level of the two ar-

rows), it will always go in the upward direction,

namely in the direction opposite to the one of

the gradient of the field.
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But then, since the wave function of the two

particles are such that they are (anti)-correlated,

the B particle will have to go in the direction of

the gradient of the field, namely upwards.
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Compare the two figures:
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So by changing the orientation of the gradient

of the field on the left of the previous figure,

while doing nothing whatsoever on the right of

that figure, we affect the trajectory of particleB

(in one situation, it goes down, in the other one

it goes up) which may be arbitrarily far away

from the A particle.
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This is one of the ways that the action at a

distance manifests itself in the de Broglie–Bohm

theory.
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There is a genuine action at a distance here,

since acting on the A particle (by choosing how

to “measure its spin”) instantly affects the be-

havior of particle B.



The fact that the de Broglie–Bohm theory is

nonlocal is a quality rather than a defect, since

we just showed that any theory accounting for

the quantum phenomena must be nonlocal.



BELL WAS WIDELY

MISUNDERSTOOD

Some theoretical work of John Bell revealed

that the EPRB experimental setup could be

used to distinguish quantum mechanics from

hypothetical hidden variable theories. . . After

the publication of Bell’s work, various teams of

experimental physicists carried out the EPRB

experiment. The result was eagerly awaited, al-

though virtually all physicists were betting on

the correctness of quantum mechanics, which

was, in fact, vindicated by the outcome.

M. GELL-MANN





The situation is like that of Bertlmann’s socks,

described by John Bell in one of his papers.

Bertlmann is a mathematician who always wears

one pink and one green sock. If you see just one

of his feet and spot a green sock, you know im-

mediately that his other foot sports a pink sock.

Yet no signal is propagated from one foot to the

other. Likewise no signal passes from one pho-

ton to the other in the experiment that confirms

quantum mechanics. No action at a distance

takes place.

M. GELL-MANN (9)



Einstein’s view was what would now be

called a hidden variables theory. Hidden

variables theories might seem to be the

most obvious way to incorporate the Un-

certainty Principle into physics. They form

the basis of the mental picture of the uni-

verse, held by many scientists, and almost

all philosophers of science. But these hid-

den variable theories are wrong. The British

physicist, John Bell, who died recently,

devised an experimental test that would

distinguish hidden variable theories. When

the experiment was carried out carefully,

the results were inconsistent with hidden

variables.

S. HAWKING (12)



In the February 2001 issue of Scientific Amer-

ican, Max Tegmark and John Archibald Wheeler

published an article entitled 100 Years of the

Quantum, where one reads:

Could the apparent quantum randomness

be replaced by some kind of unknown quan-

tity carried out inside particles, so-called

‘hidden variables’? CERN theorist John

Bell showed that in this case, quantities

that could be measured in certain difficult

experiments would inevitably disagree with

standard quantum predictions. After many

years, technology allowed researchers to

conduct these experiments and eliminate

hidden variables as a possibility.

Tegmark and Wheeler



More recently, the Nobel Prize winner Frank

Wilczek wrote:

In 1964, the physicist John Bell identified

certain constraints that must apply to any

physical theory that is both local – mean-

ing that physical influences don’t travel

faster than light – and realistic, meaning

that the physical properties of a system

exist prior to measurement. But decades

of experimental tests, [. . . ] show that the

world we live in evades those constraints.

Frank Wilczek



All the quotes above commit the same mis-

take: they ignore the fact that Bell’s result,

combined with the EPR argument, refutes lo-

cality not merely the existence of “hidden vari-

ables”.



BUT NOT EVERYBODY GOT IT WRONG.

After giving an argument similar to the one of

Bell, Feynman wrote:

That’s all. That’s the difficulty. That’s

why quantum mechanics can’t seem to be

imitable by a local classical computer.

I’ve entertained myself always by squeez-

ing the difficulty of quantum mechanics

into a smaller and smaller place, so as to

get more and more worried about this par-

ticular item. It seems to be almost ridicu-

lous that you can squeeze it to a numeri-

cal question that one thing is bigger than

another.

R. FEYNMAN (8)



A nice summary:

Contemporary physicists come in two varieties.

Type 1 physicists are bothered by EPR and

Bell’s theorem. Type 2 (the majority) are not,

but one has to distinguish two subvarieties. Type

2a physicists explain why they are not bothered.

Their explanations tend either to miss the point

entirely . . . or to contain physical assertions that

can be shown to be false. Type 2b are not both-

ered and refuse to explain why. Their position

is unassailable. (There is a variant of type 2b

who say that Bohr straightened out the whole

business, but refuse to explain how.)

D. MERMIN



CONCLUSION

I know that most men, including those at ease

with problems of the highest complexity, can

seldom accept even the simplest and most obvi-

ous truth if it be such as would oblige them to

admit the falsity of conclusions which they have

delighted in explaining to colleagues, which they

have proudly taught to others, and which they

have woven, thread by thread, into the fabric of

their lives.

TOLSTOY



APPENDIX 1: PROOF ON NONLOCAL-

ITY WITHOUT INEQUALITIES, AND WITH-

OUT EXPERIMENTS

Introduce Maximally Entangled States

Consider a finite dimensional (complex) Hilbert

space H, of dimension N .

A unit vector Ψ in H ⊗H is maximally en-

tangled if it is of the form:

Ψ =
1√
N

N∑
n=1

ψn ⊗ φn.



Ψ =
1√
N

N∑
n=1

ψn ⊗ φn.

Since we are interested in quantum mechan-

ics, we will refer to those vectors as maximally

entangled states and we will associate, by con-

vention, each space in the tensor product to a

“physical system,” namely we will consider the

set {φn}Nn=1 as a basis of states for physical sys-

tem 1 (associated to Bob when measurements

are made on that system) and the set {ψn}Nn=1

as a basis of states for physical system 2 (associ-

ated to Alice when measurements are made on

that system).



Now, given a maximally entangled state, one

can associate to each operator of the form 1|⊗O

(meaning that it acts non-trivially only on par-

ticle 1) an operator of the form Õ⊗1| (meaning

that it acts non-trivially only on particle 2).



First, one can define an operator U mapping

H to H by setting

Uφn = ψn,

∀n = 1, . . . , N , and extending U to an anti-

unitary operator on all of H.

Using the operator U , the state

Ψ = 1√
N

∑N
n=1ψn ⊗ φn

can be written as:

Ψ =
1√
N

N∑
n=1

Uφn ⊗ φn.

One can check that this formula is the same for

any basis.



Then, associate to every operator of the form

1|⊗O an operator of the form Õ⊗ 1| by setting

Õ = UOU−1.

Then, if φn are eigenstates of O, with eigen-

values λn,

Oφn = λnφn,

the states ψn = Uφn are eigenstates of Õ, also

with eigenvalues λn:

Õψn = λnψn.



Let us now generalize the EPR argument by

applying this result to spatially separated phys-

ical systems.

Suppose that we have a pair of physical sys-

tems, whose states belong to the same finite di-

mensional Hilbert space H. And suppose that

the quantum state Ψ of the pair is maximally

entangled:

Ψ =
1√
N

N∑
n=1

ψn ⊗ φn.



Any “observable” acting on system 1 is repre-

sented by a self-adjoint operator O, which has

therefore a basis of eigenvectors. Since the rep-

resentation

Ψ =
1√
N

N∑
n=1

Uφn ⊗ φn

of the state Ψ is valid in any basis, we may

choose, without loss of generality, as the set

{φn}Nn=1 the eigenstates of O. Let λn be the

corresponding eigenvalues.



Ψ =
1√
N

N∑
n=1

Uφn ⊗ φn

Remember that

If φn are eigenstates of O, with eigenvalues

λn,

Oφn = λnφn.

Then, the states ψn = Uφn are eigenstates of

Õ, also with eigenvalues λn:

Õψn = λnψn.



Ψ =
1√
N

N∑
n=1

Uφn ⊗ φn

Thus, if one measures that observable O, the

result will be one of the eigenvalues λn, each

having equal probability 1
N . If the result is

λk, the (collapsed) state of the system after the

measurement, will be ψk ⊗ φk. Then, the mea-

surement of observable Õ, defined by

Õ = UOU−1

on system 2, will necessarily yield the value λk.



Reciprocally, if one measures an observable Õ

on system 2 and the result is λl, the (collapsed)

state of the system after the measurement, will

be ψl ⊗ ψl, and the measurement of observable

O on system 1 will necessarily yield the value

λl.



Let us summarize what we just said:

Principle of perfect correlations.

In any maximally entangled quantum state,

there is, for each operator O acting on system 1,

an operator Õ acting on system 2, such that, if

one measures the physical quantity represented

by operator Õ on system 2 and the result is the

eigenvalue λl of Õ, then, measuring the physical

quantity represented by operator O on system

1 will yield with certainty the same eigenvalue

λl, and vice-versa.



The following property will be crucial in the

rest of the argument:

Locality. If systems 1 and 2 are spatially

separated from each other, then measuring an

observable on system 1 has no instantaneous ef-

fect whatsoever on system 2 and measuring an

observable on system 2 has no instantaneous ef-

fect whatsoever on system 1.



Finally, we must also define:

Non-contextual value-maps. Let H be

a finite dimensional Hilbert space and let A be

the set of self-adjoint operators on H. Suppose

H is the quantum state space for a physical sys-

tem and A is the set of quantum observables.

Suppose there are situations in which there are

observables A for which the result of measuring

A is determined already, before the measure-

ment.



We would then have a non-contextual value-

map, namely a map v : A → R that assigns the

value v(A) to any experiment associated with

what is called in quantum mechanics a “mea-

surement of an observable A.” There can be

different ways to measure the same observable.

The value-map is called non-contextual because

all such experiments, associated with the same

quantum observable A, are assigned the same

value.



We shall need only the following obvious purely

mathematical consequence of non-contextuality:

Suppose that, if Ai, i = 1, . . . , n, are mu-

tually commuting self-adjoint operators on H,

[Ai, Aj] = 0, ∀i, j = 1, . . . , n, and that f is a

function of n variables. Then ifB = f (A1, . . . , An),

we also have that

v(B) = f (v(A1), . . . , v(An)).



Now, the perfect correlations and locality im-

ply the existence of a non-contextual value-map

v, for a maximally entangled quantum state.

By the principle of perfect correlations, for any

operator O on system 1, there is an operator Õ

on system 2, with which it is perfectly correlated

to O.

Thus, if we were to measure Õ, obtaining λl,

we would know that

v(O) = λl.

concerning the result of then measuringO. There-

fore v(O) would pre-exist the measurement of

O.



But, by the assumption of locality, the mea-

surement of Õ, associated to the second sys-

tem, could not have had any effect on the first

system, and thus, this value v(O) would pre-

exist also the measurement of Õ and this would

not depend upon whether Õ had been mea-

sured. Therefore the map O → v(O) where

O ranges over all operators on system 1, is a

non-contextual value-map.



The problem posed by the non-contextual value-

map v whose existence is implied by the perfect

correlations and locality is that such maps sim-

ply do not exist (and that is a purely mathe-

matical result). Indeed, one has the:

Theorem Let H be a Hilbert space of di-

mension at least three, and let A be the set of

self-adjoint operators on H. There does not ex-

ist a map v : A → R such that:

1) ∀O ∈ A,

v(O) is an eigenvalue of O

2) ∀O,O′ ∈ A with [O,O′] = OO′ −O′O =

0,

v(O + O′) = v(O) + v(O′).



Here, we use the implication that, if B =

f (A1, . . . , An), for commuting operators Ai’s,

we also have

v(B) = f (v(A1), . . . , v(An)),

only for n = 2 and f (x, y) = x + y.



The proof of the existence of a non-contextual

value-map v and the theorem on the non-existence

of non-contextual value-maps plainly contradict

each other. So, the assumptions of at least one

of them must be false. Moreover, the theorem

on the non-existence of non-contextual value-

maps is a purely mathematical result. To derive

the existence of a non-contextual value-map v,

we assumed only the perfect correlations and

locality. The perfect correlations are an imme-

diate consequence of quantum mechanics. The

only remaining assumption is locality. Hence we

can deduce:

Nonlocality Theorem. The locality assump-

tion is false.



APPENDIX 2

Let us derive the number 1
4 mentioned above,

for the anti-correlations and an appropriate choice

of the directions 1, 2, 3.

Compute first Eα,β ≡ 〈Ψ|σAα ⊗σBβ |Ψ〉, where

α, β are unit vectors in the directions (1, 2, or 3,

specified below) in which the spin is measured at

X or Y , and σAα⊗σBβ is a tensor product of ma-

trices, each one acting on the A or B part of the

quantum state, with σAα = α1σ1 +α2σ2 +α3σ3,

where, for i = 1, 2, 3, αi are the components of

α and σi the usual Pauli matrices.



The matrix σAα is the spin operator that is

“measured” when one “measures the spin” in

direction α for the A particle and similarly for

σBβ .

So, Eα,β = 〈Ψ|σAα⊗σBβ |Ψ〉 is the expectation

value of the measurement of the spin in direc-

tion α at X and in direction β at Y , when the

quantum state is Ψ.



The quantity Eα,β = 〈Ψ|σAα ⊗ σBβ |Ψ〉is bilin-

ear in α, β and rotation invariant, so it must be

of the form λα · β, for some λ ∈ R.

For α = β, the result must be −1, because of

the anti-correlations (if the spin is up at A, it

must be down at B and vice versa). So λ = −1,

and thus Eα,β = − cos θ, where θ is the angle

between the directions α and β.



If we introduce the “hidden variables”A(α), B(β) =

±1, and consider Eα,β as an expectation value

over those variables, we have:

Eα,β = P
(
A(α) = B(β)

)
−P
(
A(α) = −B(β)

)
= 1− 2P

(
A(α) = −B(β)

)
and thus

P
(
A(α) = −B(β)

)
=

1− Eα,β
2

=
1 + cos θ

2
.

since Eα,β = − cos θ.



One then chooses the directions

1 ←→ 0 degree ,

2 ←→ 120 degree ,

3 ←→ 240 degree .

Since cos 120 = cos 240 = −1
2, we get

P
(
A(α) = −B(β)

)
=

1 + cos θ

2
=

1

4

Thus we have perfect anticorrelations only 1
4

of the time when α and β are different. With

our convention, this means that one gets the

same answer when one asks different questions

on both sides only 1
4 of the time.
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